mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Work on delay example
This commit is contained in:
parent
be0971ae42
commit
64c4a4263d
3 changed files with 321 additions and 126 deletions
|
@ -4,7 +4,7 @@
|
||||||
|
|
||||||
open import Level
|
open import Level
|
||||||
open import Category.Ambient using (Ambient)
|
open import Category.Ambient using (Ambient)
|
||||||
open import Categories.Category
|
open import Categories.Category.Core
|
||||||
open import Categories.Category.Instance.Setoids
|
open import Categories.Category.Instance.Setoids
|
||||||
open import Categories.Monad
|
open import Categories.Monad
|
||||||
open import Categories.Category.Monoidal.Instance.Setoids
|
open import Categories.Category.Monoidal.Instance.Setoids
|
||||||
|
@ -23,6 +23,8 @@ open import Function.Base using (id)
|
||||||
import Relation.Binary.PropositionalEquality as Eq
|
import Relation.Binary.PropositionalEquality as Eq
|
||||||
open Eq using (_≡_)
|
open Eq using (_≡_)
|
||||||
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
|
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
|
||||||
|
open import Codata.Musical.Notation
|
||||||
|
import Category.Monad.Partiality
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
|
||||||
|
@ -33,125 +35,164 @@ module Monad.Instance.K.Instance.Delay {c ℓ} where
|
||||||
# Capretta's Delay Monad is an Instance of K in the Category of Setoids
|
# Capretta's Delay Monad is an Instance of K in the Category of Setoids
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
record Delay (A : Set c) : Set c where
|
data Delay (A : Set c) : Set c where
|
||||||
coinductive
|
now : A → Delay A
|
||||||
field
|
later : ∞ (Delay A) → Delay A
|
||||||
node : A ⊎ Delay A
|
|
||||||
|
|
||||||
open Delay
|
module Equality {A : Setoid c (c ⊔ ℓ)} where
|
||||||
|
open Setoid A renaming (Carrier to C; _≈_ to _∼_)
|
||||||
|
open IsEquivalence (Setoid.isEquivalence A) renaming (refl to ∼-refl; sym to ∼-sym; trans to ∼-trans)
|
||||||
|
|
||||||
now : ∀ {A : Set c} → A → Delay A
|
|
||||||
node (now {A} a) = inj₁ a
|
|
||||||
|
|
||||||
later : ∀ {A : Set c} → Delay A → Delay A
|
|
||||||
node (later {A} a) = inj₂ a
|
|
||||||
|
|
||||||
never : ∀ {A : Set c} → Delay A
|
|
||||||
node (never {A}) = inj₂ never
|
|
||||||
|
|
||||||
module Equality {A : Setoid c ℓ} where
|
|
||||||
open Setoid A using () renaming (Carrier to C; _≈_ to _∼_)
|
|
||||||
data _↓_ : Delay C → C → Set (c ⊔ ℓ) where
|
data _↓_ : Delay C → C → Set (c ⊔ ℓ) where
|
||||||
now↓ : ∀ {x y} (p : x ∼ y) → now x ↓ y
|
now↓ : ∀ {x y} (x∼y : x ∼ y) → now x ↓ y
|
||||||
later↓ : ∀ {x y} (p : _↓_ x y) → later x ↓ y
|
later↓ : ∀ {x y} (x↓y : ♭ x ↓ y) → later x ↓ y
|
||||||
|
|
||||||
|
unique↓ : ∀ {c : Delay C} {x y : C} → c ↓ x → c ↓ y → x ∼ y
|
||||||
|
unique↓ (now↓ eq₁) (now↓ eq₂) = ∼-trans (∼-sym eq₁) eq₂
|
||||||
|
unique↓ (later↓ p) (later↓ q) = unique↓ p q
|
||||||
|
|
||||||
data _≈_ : Delay C → Delay C → Set (c ⊔ ℓ) where
|
data _≈_ : Delay C → Delay C → Set (c ⊔ ℓ) where
|
||||||
↓≈ : ∀ {x y z} → x ↓ z → y ↓ z → x ≈ y
|
↓≈ : ∀ {x y a b} (a∼b : a ∼ b) (x↓a : x ↓ a) (y↓b : y ↓ b) → x ≈ y
|
||||||
later-≈ : ∀ {x y} → x ≈ y → later x ≈ later y
|
later≈ : ∀ {x y} → (∞ (♭ x ≈ ♭ y)) → later x ≈ later y
|
||||||
|
|
||||||
refl : ∀ {x} → x ≈ x
|
≈-refl : ∀ {x} → x ≈ x
|
||||||
refl {x} with node x
|
≈-refl {now x} = ↓≈ ∼-refl (now↓ ∼-refl) (now↓ ∼-refl)
|
||||||
... | inj₁ z = ↓≈ {! !} {! !}
|
≈-refl {later x} = later≈ (♯ ≈-refl)
|
||||||
... | inj₂ z = {! !}
|
|
||||||
|
|
||||||
-- first try
|
≈-sym : ∀ {x y} → x ≈ y → y ≈ x
|
||||||
delay-eq-strong : ∀ (A : Setoid c ℓ) → Delay (Setoid.Carrier A) → Delay (Setoid.Carrier A) → Set ℓ
|
≈-sym (↓≈ a∼b x↓a y↓b) = ↓≈ (∼-sym a∼b) y↓b x↓a
|
||||||
delay-eq-strong A x y with node x | node y
|
≈-sym (later≈ x≈y) = later≈ (♯ ≈-sym (♭ x≈y))
|
||||||
... | inj₁ a | inj₁ b = Setoid._≈_ A a b
|
|
||||||
... | inj₁ a | inj₂ b = ⊥
|
|
||||||
... | inj₂ a | inj₁ b = ⊥
|
|
||||||
... | inj₂ a | inj₂ b = {! !}
|
|
||||||
|
|
||||||
-- second try
|
∼↓ : ∀ {x y : C} {z : Delay C} → x ∼ y → z ↓ x → z ↓ y
|
||||||
record eq-strong (A : Setoid c ℓ) (x : Delay (Setoid.Carrier A)) (y : Delay (Setoid.Carrier A)) : Set c where
|
∼↓ {x} {y} {.(now _)} x∼y (now↓ a∼x) = now↓ (∼-trans a∼x x∼y)
|
||||||
field
|
∼↓ {x} {y} {.(later _)} x∼y (later↓ z↓x) = later↓ (∼↓ x∼y z↓x)
|
||||||
node-eq₁ : (node x) ≡ (node y)
|
|
||||||
|
|
||||||
-- third try
|
≈↓ : ∀ {x y : Delay C} {z : C} → x ≈ y → x ↓ z → y ↓ z
|
||||||
mutual
|
≈↓ (↓≈ a∼b (now↓ x∼a) y↓b) (now↓ x∼z) = ∼↓ (∼-trans (∼-sym a∼b) (∼-trans (∼-sym x∼a) x∼z)) y↓b
|
||||||
node-eq : (A : Setoid c ℓ) (x y : Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → Set ℓ
|
≈↓ (↓≈ a∼b (later↓ x↓a) y↓b) (later↓ x↓z) with unique↓ x↓a x↓z
|
||||||
node-eq A (inj₁ x) (inj₁ y) = Setoid._≈_ A x y
|
... | a∼z = ∼↓ (∼-trans (∼-sym a∼b) a∼z) y↓b
|
||||||
node-eq A (inj₁ x) (inj₂ y) = ⊥
|
≈↓ (later≈ x) (later↓ x↓z) = later↓ (≈↓ (♭ x) x↓z)
|
||||||
node-eq A (inj₂ x) (inj₁ y) = ⊥
|
|
||||||
node-eq A (inj₂ x) (inj₂ y) = delay-eq-strong' A x y
|
|
||||||
delay-eq-strong' : ∀ (A : Setoid c ℓ) → Delay (Setoid.Carrier A) → Delay (Setoid.Carrier A) → Set ℓ
|
|
||||||
delay-eq-strong' A x y = node-eq A {! !} {! !}
|
|
||||||
|
|
||||||
Delay-setoid : Setoid c ℓ → Setoid c ℓ
|
≈-trans : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
|
||||||
Delay-setoid A = record { Carrier = Delay A.Carrier ; _≈_ = {! !} ; isEquivalence = {! !} }
|
≈-trans (↓≈ a∼b x↓a y↓b) (↓≈ c∼d y↓c z↓d) with unique↓ y↓b y↓c
|
||||||
|
... | b∼c = ↓≈ (∼-trans (∼-trans a∼b b∼c) c∼d) x↓a z↓d
|
||||||
|
≈-trans (↓≈ a∼b z↓a (later↓ x↓b)) (later≈ x≈y) = ↓≈ a∼b z↓a (later↓ (≈↓ (♭ x≈y) x↓b))
|
||||||
|
≈-trans (later≈ x≈y) (↓≈ a∼b (later↓ y↓a) z↓b) = ↓≈ a∼b (later↓ (≈↓ (≈-sym (♭ x≈y)) y↓a)) z↓b
|
||||||
|
≈-trans (later≈ x≈y) (later≈ y≈z) = later≈ (♯ ≈-trans (♭ x≈y) (♭ y≈z))
|
||||||
|
|
||||||
|
delaySetoid : Setoid c (c ⊔ ℓ) → Setoid c (c ⊔ ℓ)
|
||||||
|
delaySetoid A = record { Carrier = Delay Carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } }
|
||||||
where
|
where
|
||||||
module A = Setoid A
|
open Setoid A using (Carrier)
|
||||||
|
open Equality {A}
|
||||||
|
open Equality using (↓≈; later≈; now↓; later↓; _↓_; ≈↓; ≈-refl; ≈-sym; ≈-trans)
|
||||||
|
|
||||||
|
_[_≈_] : ∀ (A : Setoid c (c ⊔ ℓ)) → (x y : Delay (Setoid.Carrier A)) → Set (c ⊔ ℓ)
|
||||||
|
A [ x ≈ y ] = Equality._≈_ {A} x y
|
||||||
|
|
||||||
-- finally this should work
|
_[_∼_] : ∀ (A : Setoid c (c ⊔ ℓ)) → (x y : Setoid.Carrier A) → Set (c ⊔ ℓ)
|
||||||
mutual
|
A [ x ∼ y ] = Setoid._≈_ A x y
|
||||||
record eq-strong' (A : Setoid c ℓ) (x : Delay (Setoid.Carrier A)) (y : Delay (Setoid.Carrier A)) : Set ℓ where
|
|
||||||
coinductive
|
|
||||||
field
|
|
||||||
eq : eq-strong'' A (node x) (node y)
|
|
||||||
eq-strong'' : (A : Setoid c ℓ) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → Set ℓ
|
|
||||||
eq-strong'' A (inj₁ x) (inj₁ y) = Setoid._≈_ A x y
|
|
||||||
eq-strong'' A (inj₁ x) (inj₂ y) = ⊥
|
|
||||||
eq-strong'' A (inj₂ x) (inj₁ y) = ⊥
|
|
||||||
eq-strong'' A (inj₂ x) (inj₂ y) = eq-strong' A x y
|
|
||||||
|
|
||||||
|
∼-refl : ∀ (A : Setoid c (c ⊔ ℓ)) {x : Setoid.Carrier A} → A [ x ∼ x ]
|
||||||
|
∼-refl A = IsEquivalence.refl (Setoid.isEquivalence A)
|
||||||
|
|
||||||
-- this should also work
|
∼-sym : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Setoid.Carrier A} → A [ x ∼ y ] → A [ y ∼ x ]
|
||||||
mutual
|
∼-sym A = IsEquivalence.sym (Setoid.isEquivalence A)
|
||||||
record eq-weak (A : Setoid c ℓ) (x : Delay (Setoid.Carrier A)) (y : Delay (Setoid.Carrier A)) : Set ℓ where
|
|
||||||
coinductive
|
|
||||||
field
|
|
||||||
eq : eq-weak' A (node x) (node y)
|
|
||||||
eq-weak' : (A : Setoid c ℓ) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → Set ℓ
|
|
||||||
eq-weak' A (inj₁ x) (inj₁ y) = Setoid._≈_ A x y
|
|
||||||
eq-weak' A (inj₁ x) (inj₂ y) = eq-weak A (now x) y
|
|
||||||
eq-weak' A (inj₂ x) (inj₁ y) = eq-weak A x (now y)
|
|
||||||
eq-weak' A (inj₂ x) (inj₂ y) = eq-weak A x y
|
|
||||||
open eq-weak
|
|
||||||
|
|
||||||
now-cong : ∀ {A : Setoid c ℓ} {a b : Setoid.Carrier A} → Setoid._≈_ A a b → eq-weak A (now a) (now b)
|
∼-trans : ∀ (A : Setoid c (c ⊔ ℓ)) {x y z : Setoid.Carrier A} → A [ x ∼ y ] → A [ y ∼ z ] → A [ x ∼ z ]
|
||||||
eq (now-cong {A} {a} {b} a≈b) = a≈b
|
∼-trans A = IsEquivalence.trans (Setoid.isEquivalence A)
|
||||||
|
|
||||||
now-inj : ∀ {A : Setoid c ℓ} {a b : Setoid.Carrier A} → eq-weak A (now a) (now b) → Setoid._≈_ A a b
|
now-cong : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Setoid.Carrier A} → A [ x ∼ y ] → A [ now x ≈ now y ]
|
||||||
now-inj {A} {a} {b} na≈nb with (eq na≈nb)
|
now-cong {A} {x} {y} x∼y = ↓≈ x∼y (now↓ (∼-refl A)) (now↓ (∼-refl A))
|
||||||
... | a≈b = a≈b
|
|
||||||
|
|
||||||
now-weak-eq : ∀ {A : Setoid c ℓ} {a : Setoid.Carrier A} {b : Delay (Setoid.Carrier A)} → eq-weak A (now a) b → Σ (Setoid.Carrier A) (λ c → Setoid._≈_ A a c)
|
delayFun : ∀ {A B : Setoid c (c ⊔ ℓ)} → A ⟶ B → delaySetoid A ⟶ delaySetoid B
|
||||||
now-weak-eq {A} {a} {b} na≈b with node b | eq na≈b
|
delayFun {A} {B} f = record { _⟨$⟩_ = app ; cong = cong' }
|
||||||
... | inj₁ x | a≈b = x , a≈b
|
|
||||||
... | inj₂ x | a≈b = {! !}
|
|
||||||
|
|
||||||
weak-setoid : Setoid c ℓ → Setoid c ℓ
|
|
||||||
weak-setoid A = record { Carrier = Delay (Setoid.Carrier A) ; _≈_ = eq-weak A ; isEquivalence = record { refl = refl' ; sym = sym' ; trans = trans' } }
|
|
||||||
where
|
where
|
||||||
refl' : Reflexive (eq-weak A)
|
app : Delay (Setoid.Carrier A) → Delay (Setoid.Carrier B)
|
||||||
eq (refl' {a}) with node a
|
app (now x) = now (f ⟨$⟩ x)
|
||||||
... | inj₁ x = IsEquivalence.refl (Setoid.isEquivalence A)
|
app (later x) = later (♯ app (♭ x))
|
||||||
... | inj₂ x = refl'
|
-- TODO a variant of this should be useful outside
|
||||||
sym' : Symmetric (eq-weak A)
|
↓-cong : ∀ {x : Delay (Setoid.Carrier A)} {b : Setoid.Carrier A} → _↓_ {A} x b → _↓_ {B} (app x) (f ⟨$⟩ b)
|
||||||
eq (sym' {a} {b} a≈b) with node a | node b | eq a≈b
|
↓-cong {now x} {b} (now↓ x∼y) = now↓ (cong f x∼y)
|
||||||
... | inj₁ x | inj₁ y | z = IsEquivalence.sym (Setoid.isEquivalence A) z
|
↓-cong {later x} {b} (later↓ x↓b) = later↓ (↓-cong x↓b)
|
||||||
... | inj₂ x | inj₁ y | z = sym' z
|
cong' : ∀ {x y : Delay (Setoid.Carrier A)} → A [ x ≈ y ] → B [ app x ≈ app y ]
|
||||||
... | inj₁ x | inj₂ y | z = sym' z
|
cong' {now x} {now y} (↓≈ a∼b (now↓ x∼a) (now↓ y∼b)) = now-cong (cong f (∼-trans A x∼a (∼-trans A a∼b (∼-sym A y∼b))))
|
||||||
... | inj₂ x | inj₂ y | z = sym' z
|
cong' {now x} {later y} (↓≈ a∼b (now↓ x∼a) (later↓ y↓b)) = ↓≈ (cong f (∼-trans A x∼a a∼b)) (now↓ (∼-refl B)) (later↓ (↓-cong y↓b))
|
||||||
trans' : Transitive (eq-weak A)
|
cong' {later x} {now y} (↓≈ a∼b (later↓ x↓a) (now↓ y∼b)) = ↓≈ (cong f (∼-trans A a∼b (∼-sym A y∼b))) (later↓ (↓-cong x↓a)) (now↓ (∼-refl B))
|
||||||
eq (trans' {a} {b} {c} a≈b b≈c) with node a | node b | node c | eq a≈b | eq b≈c
|
cong' {later x} {later y} (↓≈ a∼b (later↓ x↓a) (later↓ y↓b)) = later≈ (♯ cong' (↓≈ a∼b x↓a y↓b))
|
||||||
... | inj₂ x | inj₂ y | inj₂ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
cong' {later x} {later y} (later≈ x≈y) = later≈ (♯ cong' (♭ x≈y))
|
||||||
... | inj₁ x | inj₂ y | inj₂ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
|
||||||
... | inj₂ x | inj₁ y | inj₂ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
-- ↓-delay : ∀ {A B : Setoid c ℓ} (f : A ⟶ B) {x : Setoid.Carrier → f ⟨$⟩ x
|
||||||
... | inj₁ x | inj₁ y | inj₂ z | eq₁ | eq₂ = trans' (now-cong eq₁) eq₂ -- trans' (now-cong eq₁) eq₂
|
|
||||||
... | inj₂ x | inj₂ y | inj₁ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
-- this needs polymorphic universe levels
|
||||||
... | inj₁ x | inj₂ y | inj₁ z | eq₁ | eq₂ = {! !} -- now-inj {A} {x} {z} (trans' eq₁ eq₂)
|
_≋_ : ∀ {c' ℓ'} {A B : Setoid c' ℓ'} → A ⟶ B → A ⟶ B → Set (c' ⊔ ℓ')
|
||||||
... | inj₂ x | inj₁ y | inj₁ z | eq₁ | eq₂ = trans' eq₁ (now-cong eq₂)
|
_≋_ {c'} {ℓ'} {A} {B} f g = Setoid._≈_ (A ⇨ B) f g
|
||||||
... | inj₁ x | inj₁ y | inj₁ z | eq₁ | eq₂ = IsEquivalence.trans (Setoid.isEquivalence A) eq₁ eq₂
|
|
||||||
|
later-eq : ∀ {A : Setoid c (c ⊔ ℓ)} {x y : Delay (Setoid.Carrier A)} → A [ later (♯ x) ≈ y ] → A [ x ≈ y ]
|
||||||
|
later-eq {A} {x} {y} (↓≈ a∼b (later↓ x↓a) y↓b) = ↓≈ a∼b x↓a y↓b
|
||||||
|
later-eq {A} {now x} {later y} (later≈ x≈y) = ↓≈ (∼-refl A) (now↓ (∼-refl A)) (later↓ (≈↓ (♭ x≈y) (now↓ (∼-refl A))))
|
||||||
|
later-eq {A} {later x} {later y} (later≈ x≈y) = later≈ (♯ later-eq (≈-trans (later≈ (♯ ≈-refl)) (♭ x≈y)))
|
||||||
|
|
||||||
|
later-self : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Setoid.Carrier A)} → A [ x ≈ later (♯ x) ]
|
||||||
|
later-self {A} {now x} = ↓≈ (∼-refl A) (now↓ (∼-refl A)) (later↓ (now↓ (∼-refl A)))
|
||||||
|
later-self {A} {later x} = later-eq (later≈ (♯ ≈-refl))
|
||||||
|
|
||||||
|
delayFun↓ : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) {x : Delay (Setoid.Carrier A)} {y : Setoid.Carrier A} → _↓_ {A} x y → _↓_ {B} (delayFun f ⟨$⟩ x) (f ⟨$⟩ y)
|
||||||
|
delayFun↓ {A} {B} f {now x} {y} (now↓ x∼y) = now↓ (cong f x∼y)
|
||||||
|
delayFun↓ {A} {B} f {later x} {y} (later↓ x↓y) = later↓ (delayFun↓ f x↓y)
|
||||||
|
|
||||||
|
delayFun-id : ∀ {A : Setoid c (c ⊔ ℓ)} → (delayFun idₛ) ≋ (idₛ {A = delaySetoid A})
|
||||||
|
delayFun-id {A} {now x} {now y} (↓≈ a∼b (now↓ x∼a) (now↓ y∼b)) = ↓≈ a∼b (now↓ x∼a) (now↓ y∼b)
|
||||||
|
delayFun-id {A} {now x} {later y} x≈y = x≈y
|
||||||
|
delayFun-id {A} {later x} {now y} (↓≈ a∼b (later↓ x↓a) (now↓ y∼b)) = ↓≈ a∼b (later↓ (delayFun↓ idₛ x↓a)) (now↓ y∼b)
|
||||||
|
delayFun-id {A} {later x} {later y} (↓≈ a∼b (later↓ x↓a) (later↓ y↓b)) = later≈ (♯ delayFun-id (↓≈ a∼b x↓a y↓b))
|
||||||
|
delayFun-id {A} {later x} {later y} (later≈ x≈y) = later≈ (♯ delayFun-id (♭ x≈y))
|
||||||
|
|
||||||
|
η : ∀ (A : Setoid c (c ⊔ ℓ)) → A ⟶ delaySetoid A
|
||||||
|
η A = record { _⟨$⟩_ = now ; cong = id λ x∼y → now-cong x∼y }
|
||||||
|
|
||||||
|
η-natural : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) → (η B ∘ f) ≋ (delayFun f ∘ η A)
|
||||||
|
η-natural {A} {B} f {x} {y} x≈y = now-cong (cong f x≈y)
|
||||||
|
|
||||||
|
private
|
||||||
|
μ' : ∀ {A : Setoid c (c ⊔ ℓ)} → Setoid.Carrier (delaySetoid (delaySetoid A)) → Setoid.Carrier (delaySetoid A)
|
||||||
|
μ' {A} (now x) = x
|
||||||
|
μ' {A} (later x) = later (♯ μ' {A} (♭ x))
|
||||||
|
|
||||||
|
μ↓ : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) {x : Delay (Delay (Setoid.Carrier A))} {y : Delay (Setoid.Carrier A)} → _↓_ {delaySetoid A} x y → A [ (μ' {A} x) ≈ y ]
|
||||||
|
μ↓ {A} {B} f {now x} {y} (now↓ x≈y) = x≈y
|
||||||
|
μ↓ {A} {B} f {later x} {y} (later↓ x↓y) = ≈-trans (later≈ (♯ μ↓ f x↓y)) (≈-sym later-self)
|
||||||
|
|
||||||
|
-- TODO μ≈
|
||||||
|
-- TODO do delayFun and η in the same style as μ
|
||||||
|
|
||||||
|
μ : ∀ (A : Setoid c (c ⊔ ℓ)) → delaySetoid (delaySetoid A) ⟶ delaySetoid A
|
||||||
|
μ A = record { _⟨$⟩_ = μ' {A} ; cong = {! !} }
|
||||||
|
where
|
||||||
|
cong' : ∀ {x y : Delay (Delay (Setoid.Carrier A))} → (delaySetoid A) [ x ≈ y ] → A [ μ' x ≈ μ' y ]
|
||||||
|
cong' {now x} {now y} (↓≈ a≈b (now↓ x≈a) (now↓ y≈b)) = ≈-trans x≈a (≈-trans a≈b (≈-sym y≈b))
|
||||||
|
cong' {now x} {later y} (↓≈ a≈b (now↓ x≈a) (later↓ y↓b)) = ↓≈ {A} {! a≈b !} {! !} (later↓ {! !})
|
||||||
|
cong' {later x} {now y} (↓≈ a≈b (later↓ x↓a) (now↓ (↓≈ a∼b x↓a₁ y↓b))) = ↓≈ {! !} (later↓ {! !}) x↓a₁
|
||||||
|
cong' {later x} {now .(later _)} (↓≈ a≈b (later↓ x↓a) (now↓ (later≈ x₁))) = ↓≈ {! !} {! !} {! !}
|
||||||
|
cong' {later x} {later y} (↓≈ a∼b (later↓ x↓a) (later↓ y↓b)) = later≈ (♯ cong' (↓≈ a∼b x↓a y↓b))
|
||||||
|
cong' {later x} {later y} (later≈ x≈y) = later≈ (♯ cong' (♭ x≈y))
|
||||||
|
|
||||||
|
|
||||||
|
delayMonad : Monad (Setoids c (c ⊔ ℓ))
|
||||||
|
delayMonad = record
|
||||||
|
{ F = record
|
||||||
|
{ F₀ = delaySetoid
|
||||||
|
; F₁ = delayFun
|
||||||
|
; identity = delayFun-id
|
||||||
|
; homomorphism = {! !}
|
||||||
|
; F-resp-≈ = {! !}
|
||||||
|
}
|
||||||
|
; η = ntHelper (record { η = η ; commute = η-natural })
|
||||||
|
; μ = {! !}
|
||||||
|
; assoc = {! !}
|
||||||
|
; sym-assoc = {! !}
|
||||||
|
; identityˡ = {! !}
|
||||||
|
; identityʳ = {! !}
|
||||||
|
}
|
||||||
|
|
||||||
```
|
```
|
|
@ -29,7 +29,7 @@ import Category.Monad.Partiality
|
||||||
-->
|
-->
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
module Monad.Instance.K.Instance.Delay' {c ℓ} where
|
module Monad.Instance.K.Instance.DelayOld {c ℓ} where
|
||||||
```
|
```
|
||||||
|
|
||||||
# Capretta's Delay Monad is an Instance of K in the Category of Setoids
|
# Capretta's Delay Monad is an Instance of K in the Category of Setoids
|
||||||
|
@ -39,11 +39,6 @@ module Monad.Instance.K.Instance.Delay' {c ℓ} where
|
||||||
now : A → Delay A
|
now : A → Delay A
|
||||||
later : ∞ (Delay A) → Delay A
|
later : ∞ (Delay A) → Delay A
|
||||||
|
|
||||||
data _≈s_ {A : Setoid c ℓ} : Delay (Setoid.Carrier A) → Delay (Setoid.Carrier A) → Set (c ⊔ ℓ) where
|
|
||||||
now : ∀ {x y} → Setoid._≈_ A x y → (now x) ≈s (now y)
|
|
||||||
later : ∀ {x y : Delay (Setoid.Carrier A)} → _≈s_ {A} x y → (later (♯ x)) ≈s (later (♯ y))
|
|
||||||
|
|
||||||
|
|
||||||
module Equality {A : Setoid c ℓ} where
|
module Equality {A : Setoid c ℓ} where
|
||||||
open Setoid A renaming (Carrier to C; _≈_ to _∼_)
|
open Setoid A renaming (Carrier to C; _≈_ to _∼_)
|
||||||
data _≈_ : Delay C → Delay C → Set ℓ where
|
data _≈_ : Delay C → Delay C → Set ℓ where
|
||||||
|
@ -130,20 +125,22 @@ module Monad.Instance.K.Instance.Delay' {c ℓ} where
|
||||||
sym' (↓≈ a∼b x↓a y↓b) = ↓≈ (∼-sym a∼b) y↓b x↓a
|
sym' (↓≈ a∼b x↓a y↓b) = ↓≈ (∼-sym a∼b) y↓b x↓a
|
||||||
sym' (later≈ x≈y) = later≈ (♯ sym' (♭ x≈y))
|
sym' (later≈ x≈y) = later≈ (♯ sym' (♭ x≈y))
|
||||||
|
|
||||||
-- TODO needed for trans'
|
∼↓ : ∀ {x y : C} {z : Delay C} → x ∼ y → z ↓ x → z ↓ y
|
||||||
|
∼↓ {x} {y} {.(now _)} x∼y (now↓ a∼x) = now↓ (∼-trans a∼x x∼y)
|
||||||
|
∼↓ {x} {y} {.(later _)} x∼y (later↓ z↓x) = later↓ (∼↓ x∼y z↓x)
|
||||||
|
|
||||||
≈↓ : ∀ {x y : Delay C} {z : C} → x ≈ y → x ↓ z → y ↓ z
|
≈↓ : ∀ {x y : Delay C} {z : C} → x ≈ y → x ↓ z → y ↓ z
|
||||||
≈↓ x≈y x↓z = {! !}
|
≈↓ (↓≈ a∼b (now↓ x∼a) y↓b) (now↓ x∼z) = ∼↓ (∼-trans (∼-sym a∼b) (∼-trans (∼-sym x∼a) x∼z)) y↓b
|
||||||
-- ≈↓ (↓≈ a(now↓ refl) q) (now↓ refl) = q
|
≈↓ (↓≈ a∼b (later↓ x↓a) y↓b) (later↓ x↓z) with unique↓ x↓a x↓z
|
||||||
-- ≈↓ (↓≈ (later↓ p) r) (later↓ q) with unique↓ p q
|
... | a∼z = ∼↓ (∼-trans (∼-sym a∼b) a∼z) y↓b
|
||||||
-- ≈↓ (↓≈ (later↓ p) r) (later↓ q) | refl = r
|
≈↓ (later≈ x) (later↓ x↓z) = later↓ (≈↓ (♭ x) x↓z)
|
||||||
-- ≈↓ (later≈ p) (later↓ q) = later↓ (≈↓ (♭ p) q)
|
|
||||||
|
|
||||||
trans' : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
|
trans' : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
|
||||||
trans' (↓≈ a∼b x↓a y↓b) (↓≈ c∼d y↓c z↓d) with unique↓ y↓b y↓c
|
trans' (↓≈ a∼b x↓a y↓b) (↓≈ c∼d y↓c z↓d) with unique↓ y↓b y↓c
|
||||||
... | b∼c = ↓≈ (∼-trans (∼-trans a∼b b∼c) c∼d) x↓a z↓d
|
... | b∼c = ↓≈ (∼-trans (∼-trans a∼b b∼c) c∼d) x↓a z↓d
|
||||||
trans' (↓≈ a∼b x↓a (later↓ y↓b)) (later≈ x) = ↓≈ a∼b x↓a {! !}
|
trans' (↓≈ a∼b z↓a (later↓ x↓b)) (later≈ x≈y) = ↓≈ a∼b z↓a (later↓ (≈↓ (♭ x≈y) x↓b))
|
||||||
trans' (later≈ x) (↓≈ a∼b x↓a y↓b) = {! !}
|
trans' (later≈ x≈y) (↓≈ a∼b (later↓ y↓a) z↓b) = ↓≈ a∼b (later↓ (≈↓ (sym' (♭ x≈y)) y↓a)) z↓b
|
||||||
trans' (later≈ x) (later≈ y) = {! !}
|
trans' (later≈ x≈y) (later≈ y≈z) = later≈ (♯ trans' (♭ x≈y) (♭ y≈z))
|
||||||
|
|
||||||
delay-setoid' : Setoid c ℓ → Setoid c (c ⊔ ℓ)
|
delay-setoid' : Setoid c ℓ → Setoid c (c ⊔ ℓ)
|
||||||
delay-setoid' A = record { Carrier = Delay Carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = λ {x} → {! !} ; sym = λ {x y} → {! !} ; trans = λ {x y z} → {! !} } }
|
delay-setoid' A = record { Carrier = Delay Carrier ; _≈_ = _≈_ ; isEquivalence = record { refl = λ {x} → {! !} ; sym = λ {x y} → {! !} ; trans = λ {x y z} → {! !} } }
|
157
agda/src/Monad/Instance/K/Instance/DelayRecord.lagda.md
Normal file
157
agda/src/Monad/Instance/K/Instance/DelayRecord.lagda.md
Normal file
|
@ -0,0 +1,157 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
{-# OPTIONS --allow-unsolved-metas --guardedness #-}
|
||||||
|
|
||||||
|
open import Level
|
||||||
|
open import Category.Ambient using (Ambient)
|
||||||
|
open import Categories.Category
|
||||||
|
open import Categories.Category.Instance.Setoids
|
||||||
|
open import Categories.Monad
|
||||||
|
open import Categories.Category.Monoidal.Instance.Setoids
|
||||||
|
open import Categories.Category.Cocartesian
|
||||||
|
open import Categories.Object.Terminal
|
||||||
|
open import Function.Equality as SΠ renaming (id to idₛ)
|
||||||
|
import Categories.Morphism.Reasoning as MR
|
||||||
|
open import Relation.Binary
|
||||||
|
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||||
|
open import Data.Sum.Function.Setoid
|
||||||
|
open import Data.Sum.Relation.Binary.Pointwise
|
||||||
|
open import Data.Unit.Polymorphic using (tt; ⊤)
|
||||||
|
open import Data.Empty.Polymorphic using (⊥)
|
||||||
|
open import Categories.NaturalTransformation using (ntHelper)
|
||||||
|
open import Function.Base using (id)
|
||||||
|
import Relation.Binary.PropositionalEquality as Eq
|
||||||
|
open Eq using (_≡_)
|
||||||
|
open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.K.Instance.DelayRecord {c ℓ} where
|
||||||
|
```
|
||||||
|
|
||||||
|
# Capretta's Delay Monad is an Instance of K in the Category of Setoids
|
||||||
|
|
||||||
|
```agda
|
||||||
|
record Delay (A : Set c) : Set c where
|
||||||
|
coinductive
|
||||||
|
field
|
||||||
|
node : A ⊎ Delay A
|
||||||
|
|
||||||
|
open Delay
|
||||||
|
|
||||||
|
now : ∀ {A : Set c} → A → Delay A
|
||||||
|
node (now {A} a) = inj₁ a
|
||||||
|
|
||||||
|
later : ∀ {A : Set c} → Delay A → Delay A
|
||||||
|
node (later {A} a) = inj₂ a
|
||||||
|
|
||||||
|
never : ∀ {A : Set c} → Delay A
|
||||||
|
node (never {A}) = inj₂ never
|
||||||
|
|
||||||
|
module Equality {A : Setoid c ℓ} where
|
||||||
|
open Setoid A using () renaming (Carrier to C; _≈_ to _∼_)
|
||||||
|
data _↓_ : Delay C → C → Set (c ⊔ ℓ) where
|
||||||
|
now↓ : ∀ {x y} (p : x ∼ y) → now x ↓ y
|
||||||
|
later↓ : ∀ {x y} (p : _↓_ x y) → later x ↓ y
|
||||||
|
|
||||||
|
data _≈_ : Delay C → Delay C → Set (c ⊔ ℓ) where
|
||||||
|
↓≈ : ∀ {x y z} → x ↓ z → y ↓ z → x ≈ y
|
||||||
|
later-≈ : ∀ {x y} → x ≈ y → later x ≈ later y
|
||||||
|
|
||||||
|
refl : ∀ {x} → x ≈ x
|
||||||
|
refl {x} with node x
|
||||||
|
... | inj₁ z = ↓≈ {! !} {! !}
|
||||||
|
... | inj₂ z = {! !}
|
||||||
|
|
||||||
|
-- first try
|
||||||
|
delay-eq-strong : ∀ (A : Setoid c ℓ) → Delay (Setoid.Carrier A) → Delay (Setoid.Carrier A) → Set ℓ
|
||||||
|
delay-eq-strong A x y with node x | node y
|
||||||
|
... | inj₁ a | inj₁ b = Setoid._≈_ A a b
|
||||||
|
... | inj₁ a | inj₂ b = ⊥
|
||||||
|
... | inj₂ a | inj₁ b = ⊥
|
||||||
|
... | inj₂ a | inj₂ b = {! !}
|
||||||
|
|
||||||
|
-- second try
|
||||||
|
record eq-strong (A : Setoid c ℓ) (x : Delay (Setoid.Carrier A)) (y : Delay (Setoid.Carrier A)) : Set c where
|
||||||
|
field
|
||||||
|
node-eq₁ : (node x) ≡ (node y)
|
||||||
|
|
||||||
|
-- third try
|
||||||
|
mutual
|
||||||
|
node-eq : (A : Setoid c ℓ) (x y : Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → Set ℓ
|
||||||
|
node-eq A (inj₁ x) (inj₁ y) = Setoid._≈_ A x y
|
||||||
|
node-eq A (inj₁ x) (inj₂ y) = ⊥
|
||||||
|
node-eq A (inj₂ x) (inj₁ y) = ⊥
|
||||||
|
node-eq A (inj₂ x) (inj₂ y) = delay-eq-strong' A x y
|
||||||
|
delay-eq-strong' : ∀ (A : Setoid c ℓ) → Delay (Setoid.Carrier A) → Delay (Setoid.Carrier A) → Set ℓ
|
||||||
|
delay-eq-strong' A x y = node-eq A {! !} {! !}
|
||||||
|
|
||||||
|
Delay-setoid : Setoid c ℓ → Setoid c ℓ
|
||||||
|
Delay-setoid A = record { Carrier = Delay A.Carrier ; _≈_ = {! !} ; isEquivalence = {! !} }
|
||||||
|
where
|
||||||
|
module A = Setoid A
|
||||||
|
|
||||||
|
|
||||||
|
-- finally this should work
|
||||||
|
mutual
|
||||||
|
record eq-strong' (A : Setoid c ℓ) (x : Delay (Setoid.Carrier A)) (y : Delay (Setoid.Carrier A)) : Set ℓ where
|
||||||
|
coinductive
|
||||||
|
field
|
||||||
|
eq : eq-strong'' A (node x) (node y)
|
||||||
|
eq-strong'' : (A : Setoid c ℓ) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → Set ℓ
|
||||||
|
eq-strong'' A (inj₁ x) (inj₁ y) = Setoid._≈_ A x y
|
||||||
|
eq-strong'' A (inj₁ x) (inj₂ y) = ⊥
|
||||||
|
eq-strong'' A (inj₂ x) (inj₁ y) = ⊥
|
||||||
|
eq-strong'' A (inj₂ x) (inj₂ y) = eq-strong' A x y
|
||||||
|
|
||||||
|
|
||||||
|
-- this should also work
|
||||||
|
mutual
|
||||||
|
record eq-weak (A : Setoid c ℓ) (x : Delay (Setoid.Carrier A)) (y : Delay (Setoid.Carrier A)) : Set ℓ where
|
||||||
|
coinductive
|
||||||
|
field
|
||||||
|
eq : eq-weak' A (node x) (node y)
|
||||||
|
eq-weak' : (A : Setoid c ℓ) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → (Setoid.Carrier A ⊎ Delay (Setoid.Carrier A)) → Set ℓ
|
||||||
|
eq-weak' A (inj₁ x) (inj₁ y) = Setoid._≈_ A x y
|
||||||
|
eq-weak' A (inj₁ x) (inj₂ y) = eq-weak A (now x) y
|
||||||
|
eq-weak' A (inj₂ x) (inj₁ y) = eq-weak A x (now y)
|
||||||
|
eq-weak' A (inj₂ x) (inj₂ y) = eq-weak A x y
|
||||||
|
open eq-weak
|
||||||
|
|
||||||
|
now-cong : ∀ {A : Setoid c ℓ} {a b : Setoid.Carrier A} → Setoid._≈_ A a b → eq-weak A (now a) (now b)
|
||||||
|
eq (now-cong {A} {a} {b} a≈b) = a≈b
|
||||||
|
|
||||||
|
now-inj : ∀ {A : Setoid c ℓ} {a b : Setoid.Carrier A} → eq-weak A (now a) (now b) → Setoid._≈_ A a b
|
||||||
|
now-inj {A} {a} {b} na≈nb with (eq na≈nb)
|
||||||
|
... | a≈b = a≈b
|
||||||
|
|
||||||
|
now-weak-eq : ∀ {A : Setoid c ℓ} {a : Setoid.Carrier A} {b : Delay (Setoid.Carrier A)} → eq-weak A (now a) b → Σ (Setoid.Carrier A) (λ c → Setoid._≈_ A a c)
|
||||||
|
now-weak-eq {A} {a} {b} na≈b with node b | eq na≈b
|
||||||
|
... | inj₁ x | a≈b = x , a≈b
|
||||||
|
... | inj₂ x | a≈b = {! !}
|
||||||
|
|
||||||
|
weak-setoid : Setoid c ℓ → Setoid c ℓ
|
||||||
|
weak-setoid A = record { Carrier = Delay (Setoid.Carrier A) ; _≈_ = eq-weak A ; isEquivalence = record { refl = refl' ; sym = sym' ; trans = trans' } }
|
||||||
|
where
|
||||||
|
refl' : Reflexive (eq-weak A)
|
||||||
|
eq (refl' {a}) with node a
|
||||||
|
... | inj₁ x = IsEquivalence.refl (Setoid.isEquivalence A)
|
||||||
|
... | inj₂ x = refl'
|
||||||
|
sym' : Symmetric (eq-weak A)
|
||||||
|
eq (sym' {a} {b} a≈b) with node a | node b | eq a≈b
|
||||||
|
... | inj₁ x | inj₁ y | z = IsEquivalence.sym (Setoid.isEquivalence A) z
|
||||||
|
... | inj₂ x | inj₁ y | z = sym' z
|
||||||
|
... | inj₁ x | inj₂ y | z = sym' z
|
||||||
|
... | inj₂ x | inj₂ y | z = sym' z
|
||||||
|
trans' : Transitive (eq-weak A)
|
||||||
|
eq (trans' {a} {b} {c} a≈b b≈c) with node a | node b | node c | eq a≈b | eq b≈c
|
||||||
|
... | inj₂ x | inj₂ y | inj₂ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
||||||
|
... | inj₁ x | inj₂ y | inj₂ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
||||||
|
... | inj₂ x | inj₁ y | inj₂ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
||||||
|
... | inj₁ x | inj₁ y | inj₂ z | eq₁ | eq₂ = trans' (now-cong eq₁) eq₂ -- trans' (now-cong eq₁) eq₂
|
||||||
|
... | inj₂ x | inj₂ y | inj₁ z | eq₁ | eq₂ = trans' eq₁ eq₂
|
||||||
|
... | inj₁ x | inj₂ y | inj₁ z | eq₁ | eq₂ = {! !} -- now-inj {A} {x} {z} (trans' eq₁ eq₂)
|
||||||
|
... | inj₂ x | inj₁ y | inj₁ z | eq₁ | eq₂ = trans' eq₁ (now-cong eq₂)
|
||||||
|
... | inj₁ x | inj₁ y | inj₁ z | eq₁ | eq₂ = IsEquivalence.trans (Setoid.isEquivalence A) eq₁ eq₂
|
||||||
|
```
|
Loading…
Reference in a new issue