mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Add CSS, small fixes, rewrite delay monad documentation
This commit is contained in:
parent
7f3351dd6c
commit
6ce2526b6a
7 changed files with 517 additions and 55 deletions
467
Agda.css
Normal file
467
Agda.css
Normal file
File diff suppressed because one or more lines are too long
5
Literature.md
Normal file
5
Literature.md
Normal file
|
@ -0,0 +1,5 @@
|
||||||
|
# Literature
|
||||||
|
1. *The* paper https://arxiv.org/pdf/2102.11828.pdf
|
||||||
|
2. Delay Monad by Capretta https://arxiv.org/pdf/cs/0505037.pdf
|
||||||
|
3. Altenkirch et al. show problems of the delay monad https://arxiv.org/pdf/1610.09254.pdf
|
||||||
|
4. Chapman et al. agda formalization of the delay monad https://niccoloveltri.github.io/mscs_final.pdf
|
7
Makefile
7
Makefile
|
@ -5,11 +5,13 @@ all: agda
|
||||||
|
|
||||||
pandoc: public/*.md
|
pandoc: public/*.md
|
||||||
@$(foreach file,$^, \
|
@$(foreach file,$^, \
|
||||||
pandoc $(file) -s -c Agda.css -o $(file:.md=.html) ; \
|
pandoc $(file) -s --to=html+TEX_MATH_DOLLARS --mathjax -c Agda.css -o $(file:.md=.html) ; \
|
||||||
)
|
)
|
||||||
|
|
||||||
agda: Everything.agda
|
agda: Everything.agda
|
||||||
agda --html --html-dir=public Everything.agda --html-highlight=auto -i.
|
agda --html --html-dir=public Everything.agda --html-highlight=auto -i.
|
||||||
|
rm -f public/Agda.css
|
||||||
|
cp Agda.css public/Agda.css
|
||||||
mv public/Everything.html public/index.html
|
mv public/Everything.html public/index.html
|
||||||
|
|
||||||
clean:
|
clean:
|
||||||
|
@ -17,9 +19,6 @@ clean:
|
||||||
rm -rf public/*
|
rm -rf public/*
|
||||||
find . -name '*.agdai' -exec rm \{\} \;
|
find . -name '*.agdai' -exec rm \{\} \;
|
||||||
|
|
||||||
open:
|
|
||||||
firefox public/Everything.html
|
|
||||||
|
|
||||||
# push compiled html to my cip directory
|
# push compiled html to my cip directory
|
||||||
push: all push'
|
push: all push'
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
<!--
|
<!--
|
||||||
```agda
|
```agda
|
||||||
|
{-# OPTIONS --allow-unsolved-metas #-}
|
||||||
open import Level
|
open import Level
|
||||||
open import Category.Instance.AmbientCategory
|
open import Category.Instance.AmbientCategory
|
||||||
open import Categories.Functor
|
open import Categories.Functor
|
||||||
|
@ -30,12 +31,5 @@ module Algebra.Elgot.Properties {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
commutes = {! !}
|
commutes = {! !}
|
||||||
where
|
where
|
||||||
α∘ι : α ∘ ι ≈ π₁
|
α∘ι : α ∘ ι ≈ π₁
|
||||||
α∘ι = sym (begin
|
α∘ι = {! !}
|
||||||
π₁ ≈⟨ unique {f = idC} {g = idC} (sym project₁) (sym project₁) ⟩
|
|
||||||
universal idC idC ≈⟨ {! !} ⟩
|
|
||||||
{! !} ≈⟨ {! !} ⟩
|
|
||||||
universal {! !} {! !} ≈˘⟨ unique {! !} {! !} ⟩
|
|
||||||
α ∘ ι ∎)
|
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
|
@ -6,7 +6,7 @@ open import Categories.Functor.Algebra
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
## Summary
|
## Summary
|
||||||
A *D-Algebra* `(A, α : D₀ A ⇒ A)` is called a *search-algebra* if it satiesfies
|
A *D-Algebra* `(A, α : D₀ A ⇒ A)` is called a *search-algebra* if it satisfies
|
||||||
|
|
||||||
- α now ≈ id
|
- α now ≈ id
|
||||||
- α ▷ ≈ α
|
- α ▷ ≈ α
|
||||||
|
|
|
@ -20,6 +20,7 @@ import Categories.Morphism.Reasoning as MR'
|
||||||
|
|
||||||
## Summary
|
## Summary
|
||||||
We work in an ambient category that
|
We work in an ambient category that
|
||||||
|
|
||||||
- is extensive (has finite coproducts and pullbacks along injections)
|
- is extensive (has finite coproducts and pullbacks along injections)
|
||||||
- is cartesian (has finite products, extensive + cartesian also gives a distributivity isomorphism)
|
- is cartesian (has finite products, extensive + cartesian also gives a distributivity isomorphism)
|
||||||
- has a parametrized NNO ℕ
|
- has a parametrized NNO ℕ
|
||||||
|
|
|
@ -14,16 +14,21 @@ open import Categories.Category.Construction.F-Coalgebras
|
||||||
open import Category.Instance.AmbientCategory using (Ambient)
|
open import Category.Instance.AmbientCategory using (Ambient)
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
|
||||||
## Summary
|
|
||||||
This file introduces the delay monad ***D***
|
|
||||||
|
|
||||||
## Code
|
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
module Monad.Instance.Delay {o ℓ e} (ambient : Ambient o ℓ e) where
|
module Monad.Instance.Delay {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
open Ambient ambient
|
open Ambient ambient
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Definition
|
||||||
|
|
||||||
|
The delay monad is usually defined as a coinductive type with two constructors `now : X → D X` and `later : D X → D X`, e.g. in the [agda-stdlib](https://agda.github.io/agda-stdlib/Effect.Monad.Partiality.html#1523)
|
||||||
|
|
||||||
|
We will now define it categorically by existence of final coalgebras for the functor `(X + -)` where `X` is some object.
|
||||||
|
This functor trivially sends objects `Y` to `X + Y` and functions `f` to `id + f`.
|
||||||
|
|
||||||
|
In this definition `D X` is the underlying object of the final coalgebra given by `X`.
|
||||||
|
We then use Lambek's Lemma to gain an isomorphism `D X ≅ X + D X`, whose inverse can be factored into the constructors `now` and `later`.
|
||||||
|
|
||||||
<!--
|
<!--
|
||||||
```agda
|
```agda
|
||||||
open import Categories.Object.NaturalNumbers.Properties.F-Algebras using (PNNO⇒Initial₂; PNNO-Algebra)
|
open import Categories.Object.NaturalNumbers.Properties.F-Algebras using (PNNO⇒Initial₂; PNNO-Algebra)
|
||||||
|
@ -38,22 +43,10 @@ module Monad.Instance.Delay {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
```
|
```
|
||||||
-->
|
-->
|
||||||
|
|
||||||
The Delay monad is usually described by existence of final coalgebras for the functor `(X + -)` where `X` is some arbitrary object.
|
|
||||||
This functor trivially sends objects `Y` to `X + Y` and functions `f` to `id + f`.
|
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
record DelayM : Set (o ⊔ ℓ ⊔ e) where
|
record DelayM : Set (o ⊔ ℓ ⊔ e) where
|
||||||
field
|
field
|
||||||
coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (A +-))
|
coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (A +-))
|
||||||
```
|
|
||||||
|
|
||||||
These are all the fields this record needs!
|
|
||||||
Of course this doesn't tell us very much, so our goal will be to extract a monad from this definition.
|
|
||||||
|
|
||||||
Conventionally the delay monad is described via functions `now` and `later` where the former lifts a value into a computation and the latter postpones a computation by one time unit.
|
|
||||||
We can now define these functions by bisecting the isomorphism `out : DX ≅ X + DX` which we get by Lambek's lemma. (Here `DX` is the element of the final coalgebra for `X`)
|
|
||||||
|
|
||||||
```agda
|
|
||||||
|
|
||||||
module _ {X : Obj} where
|
module _ {X : Obj} where
|
||||||
open Terminal (coalgebras X) using (⊤; !; !-unique)
|
open Terminal (coalgebras X) using (⊤; !; !-unique)
|
||||||
|
@ -79,9 +72,10 @@ We can now define these functions by bisecting the isomorphism `out : DX ≅ X +
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use our terminal coalgebras to get a *coiteration operator* `coit`:
|
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use the final coalgebras to get a *coiteration operator* `coit`:
|
||||||
|
|
||||||
TODO add diagram
|
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJZIl0sWzIsMCwiWCArIFkiXSxbMCwxLCJEWCJdLFsyLDEsIlggKyBEWCJdLFswLDEsImYiXSxbMCwyLCIhID06IGNvaXQgXFw7IGYiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ== -->
|
||||||
|
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJZIl0sWzIsMCwiWCArIFkiXSxbMCwxLCJEWCJdLFsyLDEsIlggKyBEWCJdLFswLDEsImYiXSxbMCwyLCIhID06IGNvaXQgXFw7IGYiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==&embed" width="490" height="304" style="border-radius: 8px; border: none;"></iframe>
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
module _ {Y : Obj} where
|
module _ {Y : Obj} where
|
||||||
|
@ -92,31 +86,41 @@ TODO add diagram
|
||||||
coit-commutes f = commutes (! {A = record { A = Y ; α = f }})
|
coit-commutes f = commutes (! {A = record { A = Y ; α = f }})
|
||||||
```
|
```
|
||||||
|
|
||||||
If we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
|
Furthermore if we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
|
||||||
At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y + \_)`-functor defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras.
|
At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y + \_)`-functor defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras.
|
||||||
TODO add diagram
|
|
||||||
|
|
||||||
|
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgXFxtYXRoYmJ7Tn0iXSxbMiwwLCJYICsgKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMCwxLCJEIFgiXSxbMiwxLCJYICsgRCBYIl0sWzAsMSwi4omFIl0sWzAsMiwiISA9OiBcXGlvdGEiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGIFxcaW90YSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ== -->
|
||||||
|
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgXFxtYXRoYmJ7Tn0iXSxbMiwwLCJYICsgKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMCwxLCJEIFgiXSxbMiwxLCJYICsgRCBYIl0sWzAsMSwi4omFIl0sWzAsMiwiISA9OiBcXGlvdGEiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGIFxcaW90YSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==&embed" width="575" height="304" style="border-radius: 8px; border: none;"></iframe>
|
||||||
```agda
|
```agda
|
||||||
iso : X × N ≅ X + X × N
|
nno-iso : X × N ≅ X + X × N
|
||||||
iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts ℕ X })
|
nno-iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts ℕ X })
|
||||||
|
|
||||||
ι : X × N ⇒ DX
|
ι : X × N ⇒ DX
|
||||||
ι = u (! {A = record { A = X × N ; α = _≅_.from iso }})
|
ι = u (! {A = record { A = X × N ; α = _≅_.from nno-iso }})
|
||||||
|
|
||||||
```
|
```
|
||||||
Make `DX` conveniently accessible
|
|
||||||
|
## Delay is a monad
|
||||||
|
|
||||||
|
The next step is showing that this actually yields a monad. Some parts for this are already given, we can construct `D X` from `X` and `now : D X ⇒ D X` is the monad unit.
|
||||||
|
What's missing is Kleisli-lifting, given a morphism `f : X ⇒ D Y` we need to construct a morphism `extend f : D X ⇒ D Y`.
|
||||||
|
To do so we go from `D X` to `D X + D Y` via injection and then construct a coalgebra `D X + D Y ⇒ Y + (D X + D Y)`, the final coalgebra `D Y ⇒ Y + D Y` then yields a coalgebra-morphism from `D X + D Y` to `D Y`, see the following diagram:
|
||||||
|
|
||||||
|
<!-- https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWCArIERZIl0sWzIsMSwiWSArIChEWCArIERZKSJdLFswLDAsIkRYIl0sWzAsMiwiRFkiXSxbMiwyLCJZICsgRFkiXSxbMCwxLCJcXGFscGhhIl0sWzIsMCwiaV8xIl0sWzAsMywiISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDQsIm91dCJdLFsxLDQsIkYgISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ== -->
|
||||||
|
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWCArIERZIl0sWzIsMSwiWSArIChEWCArIERZKSJdLFswLDAsIkRYIl0sWzAsMiwiRFkiXSxbMiwyLCJZICsgRFkiXSxbMCwxLCJcXGFscGhhIl0sWzIsMCwiaV8xIl0sWzAsMywiISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDQsIm91dCJdLFsxLDQsIkYgISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==&embed" width="551" height="304" style="border-radius: 8px; border: none;"></iframe>
|
||||||
|
|
||||||
|
Proving the monad laws then requires two key lemmas, first of all that the following diagram commutes for any `f` (this is `extendlaw`)
|
||||||
|
|
||||||
|
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJEWCJdLFszLDAsIkRZIl0sWzAsMSwiWCArIERYIl0sWzMsMSwiWSArIERZIl0sWzAsMSwiZXh0ZW5kXFw7ZiJdLFswLDIsIm91dCIsMl0sWzIsMywiW291dFxcO2YsaV8yXFw7KGV4dGVuZFxcO2YpXSIsMl0sWzEsMywib3V0Il1d -->
|
||||||
|
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJEWCJdLFszLDAsIkRZIl0sWzAsMSwiWCArIERYIl0sWzMsMSwiWSArIERZIl0sWzAsMSwiZXh0ZW5kXFw7ZiJdLFswLDIsIm91dCIsMl0sWzIsMywiW291dFxcO2YsaV8yXFw7KGV4dGVuZFxcO2YpXSIsMl0sWzEsMywib3V0Il1d&embed" width="670" height="304" style="border-radius: 8px; border: none;"></iframe>
|
||||||
|
|
||||||
|
and second that `extend f` is the unique morphism satisfying the commutative diagram i.e. any other morphism for which the diagram commutes must be equivalent to `extend f` (this is `extend-unique`).
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
|
-- Make DX more accessible outside
|
||||||
D₀ : Obj → Obj
|
D₀ : Obj → Obj
|
||||||
D₀ X = DX {X}
|
D₀ X = DX {X}
|
||||||
```
|
|
||||||
|
|
||||||
With these definitions at hand, we can now indeed construct a monad (in extension form) as the triple `(F₀, unit, extend)`.
|
|
||||||
`F₀` corresponds to `D₀` of course and `unit` is `now`, the tricky part is kleisli lifting aka. `extend`.
|
|
||||||
|
|
||||||
TODO
|
|
||||||
|
|
||||||
|
|
||||||
```agda
|
|
||||||
kleisli : KleisliTriple C
|
kleisli : KleisliTriple C
|
||||||
kleisli = record
|
kleisli = record
|
||||||
{ F₀ = D₀
|
{ F₀ = D₀
|
||||||
|
@ -277,11 +281,3 @@ TODO
|
||||||
functor : Endofunctor C
|
functor : Endofunctor C
|
||||||
functor = Monad.F monad
|
functor = Monad.F monad
|
||||||
```
|
```
|
||||||
|
|
||||||
### Definition 30: Search-Algebras
|
|
||||||
|
|
||||||
TODO
|
|
||||||
|
|
||||||
### Proposition 31 : the category of uniform-iteration coalgebras coincides with the category of search-coalgebras
|
|
||||||
|
|
||||||
TODO
|
|
||||||
|
|
Loading…
Reference in a new issue