Add CSS, small fixes, rewrite delay monad documentation

This commit is contained in:
Leon Vatthauer 2023-09-16 00:02:51 +02:00
parent 7f3351dd6c
commit 6ce2526b6a
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
7 changed files with 517 additions and 55 deletions

467
Agda.css Normal file

File diff suppressed because one or more lines are too long

5
Literature.md Normal file
View file

@ -0,0 +1,5 @@
# Literature
1. *The* paper https://arxiv.org/pdf/2102.11828.pdf
2. Delay Monad by Capretta https://arxiv.org/pdf/cs/0505037.pdf
3. Altenkirch et al. show problems of the delay monad https://arxiv.org/pdf/1610.09254.pdf
4. Chapman et al. agda formalization of the delay monad https://niccoloveltri.github.io/mscs_final.pdf

View file

@ -5,11 +5,13 @@ all: agda
pandoc: public/*.md
@$(foreach file,$^, \
pandoc $(file) -s -c Agda.css -o $(file:.md=.html) ; \
pandoc $(file) -s --to=html+TEX_MATH_DOLLARS --mathjax -c Agda.css -o $(file:.md=.html) ; \
)
agda: Everything.agda
agda --html --html-dir=public Everything.agda --html-highlight=auto -i.
rm -f public/Agda.css
cp Agda.css public/Agda.css
mv public/Everything.html public/index.html
clean:
@ -17,9 +19,6 @@ clean:
rm -rf public/*
find . -name '*.agdai' -exec rm \{\} \;
open:
firefox public/Everything.html
# push compiled html to my cip directory
push: all push'

View file

@ -1,5 +1,6 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Category.Instance.AmbientCategory
open import Categories.Functor
@ -30,12 +31,5 @@ module Algebra.Elgot.Properties {o e} (ambient : Ambient o e) where
commutes = {! !}
where
α∘ι : αι ≈ π₁
α∘ι = sym (begin
π₁ ≈⟨ unique {f = idC} {g = idC} (sym project₁) (sym project₁) ⟩
universal idC idC ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
universal {! !} {! !} ≈˘⟨ unique {! !} {! !} ⟩
αι ∎)
α∘ι = {! !}
```

View file

@ -6,7 +6,7 @@ open import Categories.Functor.Algebra
```
-->
## Summary
A *D-Algebra* `(A, α : D₀ A ⇒ A)` is called a *search-algebra* if it satiesfies
A *D-Algebra* `(A, α : D₀ A ⇒ A)` is called a *search-algebra* if it satisfies
- α now ≈ id
- α ▷ ≈ α

View file

@ -20,6 +20,7 @@ import Categories.Morphism.Reasoning as MR'
## Summary
We work in an ambient category that
- is extensive (has finite coproducts and pullbacks along injections)
- is cartesian (has finite products, extensive + cartesian also gives a distributivity isomorphism)
- has a parametrized NNO

View file

@ -14,16 +14,21 @@ open import Categories.Category.Construction.F-Coalgebras
open import Category.Instance.AmbientCategory using (Ambient)
```
-->
## Summary
This file introduces the delay monad ***D***
## Code
```agda
module Monad.Instance.Delay {o e} (ambient : Ambient o e) where
open Ambient ambient
```
## Definition
The delay monad is usually defined as a coinductive type with two constructors `now : X → D X` and `later : D X → D X`, e.g. in the [agda-stdlib](https://agda.github.io/agda-stdlib/Effect.Monad.Partiality.html#1523)
We will now define it categorically by existence of final coalgebras for the functor `(X + -)` where `X` is some object.
This functor trivially sends objects `Y` to `X + Y` and functions `f` to `id + f`.
In this definition `D X` is the underlying object of the final coalgebra given by `X`.
We then use Lambek's Lemma to gain an isomorphism `D X ≅ X + D X`, whose inverse can be factored into the constructors `now` and `later`.
<!--
```agda
open import Categories.Object.NaturalNumbers.Properties.F-Algebras using (PNNO⇒Initial₂; PNNO-Algebra)
@ -38,22 +43,10 @@ module Monad.Instance.Delay {o e} (ambient : Ambient o e) where
```
-->
The Delay monad is usually described by existence of final coalgebras for the functor `(X + -)` where `X` is some arbitrary object.
This functor trivially sends objects `Y` to `X + Y` and functions `f` to `id + f`.
```agda
record DelayM : Set (o ⊔ ⊔ e) where
field
coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (A +-))
```
These are all the fields this record needs!
Of course this doesn't tell us very much, so our goal will be to extract a monad from this definition.
Conventionally the delay monad is described via functions `now` and `later` where the former lifts a value into a computation and the latter postpones a computation by one time unit.
We can now define these functions by bisecting the isomorphism `out : DX ≅ X + DX` which we get by Lambek's lemma. (Here `DX` is the element of the final coalgebra for `X`)
```agda
module _ {X : Obj} where
open Terminal (coalgebras X) using (; !; !-unique)
@ -79,9 +72,10 @@ We can now define these functions by bisecting the isomorphism `out : DX ≅ X +
```
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use our terminal coalgebras to get a *coiteration operator* `coit`:
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use the final coalgebras to get a *coiteration operator* `coit`:
TODO add diagram
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJZIl0sWzIsMCwiWCArIFkiXSxbMCwxLCJEWCJdLFsyLDEsIlggKyBEWCJdLFswLDEsImYiXSxbMCwyLCIhID06IGNvaXQgXFw7IGYiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ== -->
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJZIl0sWzIsMCwiWCArIFkiXSxbMCwxLCJEWCJdLFsyLDEsIlggKyBEWCJdLFswLDEsImYiXSxbMCwyLCIhID06IGNvaXQgXFw7IGYiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==&embed" width="490" height="304" style="border-radius: 8px; border: none;"></iframe>
```agda
module _ {Y : Obj} where
@ -92,31 +86,41 @@ TODO add diagram
coit-commutes f = commutes (! {A = record { A = Y ; α = f }})
```
If we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
Furthermore if we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y + \_)`-functor defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras.
TODO add diagram
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgXFxtYXRoYmJ7Tn0iXSxbMiwwLCJYICsgKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMCwxLCJEIFgiXSxbMiwxLCJYICsgRCBYIl0sWzAsMSwi4omFIl0sWzAsMiwiISA9OiBcXGlvdGEiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGIFxcaW90YSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ== -->
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgXFxtYXRoYmJ7Tn0iXSxbMiwwLCJYICsgKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMCwxLCJEIFgiXSxbMiwxLCJYICsgRCBYIl0sWzAsMSwi4omFIl0sWzAsMiwiISA9OiBcXGlvdGEiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGIFxcaW90YSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==&embed" width="575" height="304" style="border-radius: 8px; border: none;"></iframe>
```agda
iso : X × N ≅ X + X × N
iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts X })
nno-iso : X × N ≅ X + X × N
nno-iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts X })
ι : X × N ⇒ DX
ι = u (! {A = record { A = X × N ; α = _≅_.from iso }})
ι = u (! {A = record { A = X × N ; α = _≅_.from nno-iso }})
```
Make `DX` conveniently accessible
## Delay is a monad
The next step is showing that this actually yields a monad. Some parts for this are already given, we can construct `D X` from `X` and `now : D X ⇒ D X` is the monad unit.
What's missing is Kleisli-lifting, given a morphism `f : X ⇒ D Y` we need to construct a morphism `extend f : D X ⇒ D Y`.
To do so we go from `D X` to `D X + D Y` via injection and then construct a coalgebra `D X + D Y ⇒ Y + (D X + D Y)`, the final coalgebra `D Y ⇒ Y + D Y` then yields a coalgebra-morphism from `D X + D Y` to `D Y`, see the following diagram:
<!-- https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWCArIERZIl0sWzIsMSwiWSArIChEWCArIERZKSJdLFswLDAsIkRYIl0sWzAsMiwiRFkiXSxbMiwyLCJZICsgRFkiXSxbMCwxLCJcXGFscGhhIl0sWzIsMCwiaV8xIl0sWzAsMywiISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDQsIm91dCJdLFsxLDQsIkYgISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ== -->
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWCArIERZIl0sWzIsMSwiWSArIChEWCArIERZKSJdLFswLDAsIkRYIl0sWzAsMiwiRFkiXSxbMiwyLCJZICsgRFkiXSxbMCwxLCJcXGFscGhhIl0sWzIsMCwiaV8xIl0sWzAsMywiISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDQsIm91dCJdLFsxLDQsIkYgISIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==&embed" width="551" height="304" style="border-radius: 8px; border: none;"></iframe>
Proving the monad laws then requires two key lemmas, first of all that the following diagram commutes for any `f` (this is `extendlaw`)
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJEWCJdLFszLDAsIkRZIl0sWzAsMSwiWCArIERYIl0sWzMsMSwiWSArIERZIl0sWzAsMSwiZXh0ZW5kXFw7ZiJdLFswLDIsIm91dCIsMl0sWzIsMywiW291dFxcO2YsaV8yXFw7KGV4dGVuZFxcO2YpXSIsMl0sWzEsMywib3V0Il1d -->
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJEWCJdLFszLDAsIkRZIl0sWzAsMSwiWCArIERYIl0sWzMsMSwiWSArIERZIl0sWzAsMSwiZXh0ZW5kXFw7ZiJdLFswLDIsIm91dCIsMl0sWzIsMywiW291dFxcO2YsaV8yXFw7KGV4dGVuZFxcO2YpXSIsMl0sWzEsMywib3V0Il1d&embed" width="670" height="304" style="border-radius: 8px; border: none;"></iframe>
and second that `extend f` is the unique morphism satisfying the commutative diagram i.e. any other morphism for which the diagram commutes must be equivalent to `extend f` (this is `extend-unique`).
```agda
-- Make DX more accessible outside
D₀ : Obj → Obj
D₀ X = DX {X}
```
With these definitions at hand, we can now indeed construct a monad (in extension form) as the triple `(F₀, unit, extend)`.
`F₀` corresponds to `D₀` of course and `unit` is `now`, the tricky part is kleisli lifting aka. `extend`.
TODO
```agda
kleisli : KleisliTriple C
kleisli = record
{ F₀ = D₀
@ -277,11 +281,3 @@ TODO
functor : Endofunctor C
functor = Monad.F monad
```
### Definition 30: Search-Algebras
TODO
### Proposition 31 : the category of uniform-iteration coalgebras coincides with the category of search-coalgebras
TODO