mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
sync
This commit is contained in:
parent
327c333293
commit
7265de98d0
1 changed files with 60 additions and 3 deletions
|
@ -32,6 +32,19 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
||||||
open Equality
|
open Equality
|
||||||
open Setoid using () renaming (Carrier to ∣_∣)
|
open Setoid using () renaming (Carrier to ∣_∣)
|
||||||
|
|
||||||
|
out : ∀ {A : Set ℓ} → A ⊥ → A ⊎ A ⊥
|
||||||
|
out {A} (now x) = inj₁ x
|
||||||
|
out {A} (later x) = inj₂ (♭ x)
|
||||||
|
|
||||||
|
out-cong : ∀ {A : Setoid ℓ ℓ} {x y : ∣ A ∣ ⊥ } → A [ x ≈ y ] → (A ⊎ₛ A ⊥ₛ) [ out x ∼ out y ]
|
||||||
|
out-cong {A} {now x} {now y} x≈y = cong inj₁ₛ (now-inj x≈y)
|
||||||
|
out-cong {A} {now x} {later y} x≈y = {! !}
|
||||||
|
out-cong {A} {later x} {now y} x≈y = {! !}
|
||||||
|
out-cong {A} {later x} {later y} x≈y = {! !}
|
||||||
|
|
||||||
|
≡to∼ : ∀ {A : Setoid ℓ ℓ} {a b : ∣ A ∣} → a ≡ b → A [ a ∼ b ]
|
||||||
|
≡to∼ {A} a≡b rewrite a≡b = ∼-refl A
|
||||||
|
|
||||||
conflict : ∀ {ℓ''} (X Y : Setoid ℓ ℓ) {Z : Set ℓ''}
|
conflict : ∀ {ℓ''} (X Y : Setoid ℓ ℓ) {Z : Set ℓ''}
|
||||||
{x : ∣ X ∣} {y : ∣ Y ∣} → (X ⊎ₛ Y) [ inj₁ x ∼ inj₂ y ] → Z
|
{x : ∣ X ∣} {y : ∣ Y ∣} → (X ⊎ₛ Y) [ inj₁ x ∼ inj₂ y ] → Z
|
||||||
conflict X Y ()
|
conflict X Y ()
|
||||||
|
@ -40,10 +53,54 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
||||||
iter' {A} {X} f (inj₁ x) = x
|
iter' {A} {X} f (inj₁ x) = x
|
||||||
iter' {A} {X} f (inj₂ y) = later (♯ iter' {A} {X} f (f y))
|
iter' {A} {X} f (inj₂ y) = later (♯ iter' {A} {X} f (f y))
|
||||||
|
|
||||||
-- TODO works!!
|
-- TODO provable with drop-inj₁ etc...
|
||||||
|
iter'-cong : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ A ⊥ₛ ⊎ₛ X) {x y : ∣ A ∣ ⊥ ⊎ ∣ X ∣} → (A ⊥ₛ ⊎ₛ X) [ x ∼ y ] → A [ iter' (f ._⟨$⟩_) x ≈ iter' (f ._⟨$⟩_) y ]
|
||||||
|
iter'-cong {A} {X} f {x} {y} x∼y with x in eqa | y in eqb
|
||||||
|
... | inj₁ a | inj₁ b = {! !}
|
||||||
|
... | inj₁ a | inj₂ b = {! !}
|
||||||
|
... | inj₂ a | inj₁ b = {! !}
|
||||||
|
... | inj₂ a | inj₂ b = {! !}
|
||||||
|
|
||||||
_# : ∀ {A X : Set ℓ} → (X → A ⊥ ⊎ X) → X → A ⊥
|
_# : ∀ {A X : Set ℓ} → (X → A ⊥ ⊎ X) → X → A ⊥
|
||||||
(f #) x = iter' f (inj₂ x)
|
(f #) x = iter' f (inj₂ x)
|
||||||
|
|
||||||
|
#-cong : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ A ⊥ₛ ⊎ₛ X) {x y : ∣ X ∣} → X [ x ∼ y ] → A [ ((f ._⟨$⟩_) #) x ≈ ((f ._⟨$⟩_) #) y ]
|
||||||
|
#-cong {A} {X} f {x} {y} x∼y = later≈ (♯ iter'-cong f (cong f x∼y))
|
||||||
|
|
||||||
|
iter'-Fix : ∀ {A X : Setoid ℓ ℓ} {f : X ⟶ (A ⊥ₛ ⊎ₛ X)} {x y : ∣ X ∣} → X [ x ∼ y ] → A [ ((f ._⟨$⟩_)#) x ≈ (iter' (f ._⟨$⟩_)) ((f ._⟨$⟩_) y) ]
|
||||||
|
iter'-Fix {A} {X} {f} {x} {y} x∼y = ≈-trans (#-cong f x∼y) helper
|
||||||
|
where
|
||||||
|
helper : A [ ((f ._⟨$⟩_)#) y ≈ (iter' (f ._⟨$⟩_)) ((f ._⟨$⟩_) y) ]
|
||||||
|
helper with (f ._⟨$⟩_) y in eqa
|
||||||
|
... | inj₁ a = ≈-sym (later-eq (later≈ (♯ ≈-sym (iter'-cong f (≡to∼ {A ⊥ₛ ⊎ₛ X} eqa)))))
|
||||||
|
... | inj₂ a = later≈ (♯ ≈-trans helper' (≈-sym (later-eq (later≈ (♯ ≈-refl)))))
|
||||||
|
where
|
||||||
|
helper' : A [ iter' (f ._⟨$⟩_) (f ._⟨$⟩_ y) ≈ later (♯ iter' (f ._⟨$⟩_) ((f ._⟨$⟩_) a)) ]
|
||||||
|
helper' = ≈-trans (iter'-cong f (≡to∼ {A ⊥ₛ ⊎ₛ X} eqa)) (later≈ (♯ ≈-refl))
|
||||||
|
|
||||||
|
|
||||||
|
#-Fix : ∀ {A X : Setoid ℓ ℓ} {f : X ⟶ (A ⊥ₛ ⊎ₛ X)} {x y : ∣ X ∣} → X [ x ∼ y ] → A [ ((f ._⟨$⟩_) #) x ≈ [ Function.id , (f ._⟨$⟩_) # ] ((f ._⟨$⟩_) y) ] -- [ Function.id , iter {A} {X} (f ._⟨$⟩_) ] ((f ._⟨$⟩_) y) ]
|
||||||
|
#-Fix {A} {X} {f} {x} {y} x∼y = ≈-trans (iter'-Fix {A} {X} {f} x∼y) helper
|
||||||
|
where
|
||||||
|
helper : iter' (f ._⟨$⟩_) (f ._⟨$⟩_ y) ≈ [ Function.id , f ._⟨$⟩_ # ] (f ._⟨$⟩_ y)
|
||||||
|
helper with (f ._⟨$⟩_) y in eqa
|
||||||
|
... | inj₁ a = ≈-refl
|
||||||
|
... | inj₂ a = later≈ (♯ ≈-refl)
|
||||||
|
|
||||||
|
mutual
|
||||||
|
iter'-Uni : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (A ⊥ₛ ⊎ₛ X)} {g : Y ⟶ (A ⊥ₛ ⊎ₛ Y)} {h : X ⟶ Y} → ([ inj₁ₛ ∘ idₛ , inj₂ₛ ∘ h ]ₛ ∘ f) ≋ (g ∘ h) → ∀ {x y : ∣ A ∣ ⊥ ⊎ ∣ X ∣} → (A ⊥ₛ ⊎ₛ X) [ x ∼ y ] → A [ iter' (f ._⟨$⟩_) x ≈ iter' (g ._⟨$⟩_) ([ inj₁ , (inj₂ ∘′ (h ._⟨$⟩_)) ] y) ]
|
||||||
|
iter'-Uni {A} {X} {Y} {f} {g} {h} hf≋gh {inj₁ x} {inj₁ y} x∼y = drop-inj₁ x∼y
|
||||||
|
iter'-Uni {A} {X} {Y} {f} {g} {h} hf≋gh {inj₂ x} {inj₂ y} x∼y = later≈ (♯ ≈-trans (iter'-cong f (cong f (drop-inj₂ x∼y))) (≈-trans helper (iter'-cong g (hf≋gh (∼-refl X)))))
|
||||||
|
where
|
||||||
|
helper : iter' (f ._⟨$⟩_) (f ⟨$⟩ y) ≈ iter' (g ._⟨$⟩_) ([ inj₁ , (inj₂ ∘′ (h ._⟨$⟩_)) ] (f ⟨$⟩ y))
|
||||||
|
helper with f ⟨$⟩ y in eqa
|
||||||
|
... | inj₁ a = ≈-refl
|
||||||
|
... | inj₂ a = later≈ (♯ {! !})
|
||||||
|
-- ... | inj₂ a = later≈ (♯ ≈-trans (≈-sym (iter'-Fix {A} {X} {f} (∼-refl X))) (≈-trans (#-Uni {A} {X} {Y} {f} {g} {h} hf≋gh {a} {a} (∼-refl X)) (iter'-Fix {A} {Y} {g} (∼-refl Y))))
|
||||||
|
|
||||||
|
-- #-Uni : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (A ⊥ₛ ⊎ₛ X)} {g : Y ⟶ (A ⊥ₛ ⊎ₛ Y)} {h : X ⟶ Y} → ([ inj₁ₛ ∘ idₛ , inj₂ₛ ∘ h ]ₛ ∘ f) ≋ (g ∘ h) → ∀ {x y : ∣ X ∣} → X [ x ∼ y ] → A [ ((f ._⟨$⟩_)#) x ≈ ((g ._⟨$⟩_)#) (h ⟨$⟩ y) ]
|
||||||
|
-- #-Uni {A} {X} {Y} {f} {g} {h} hf≋gh {x} {y} x∼y = later≈ (♯ ≈-trans (iter'-Uni {A} {X} {Y} {f} {g} {h} hf≋gh {f ._⟨$⟩_ x} {f ._⟨$⟩_ y} (cong f x∼y)) (iter'-cong g (hf≋gh (∼-refl X))))
|
||||||
|
|
||||||
iter : ∀ {A X : Setoid ℓ ℓ} → (∣ X ∣ → (∣ A ∣ ⊥ ⊎ ∣ X ∣)) → ∣ X ∣ → ∣ A ∣ ⊥
|
iter : ∀ {A X : Setoid ℓ ℓ} → (∣ X ∣ → (∣ A ∣ ⊥ ⊎ ∣ X ∣)) → ∣ X ∣ → ∣ A ∣ ⊥
|
||||||
iter {A} {X} f x with f x
|
iter {A} {X} f x with f x
|
||||||
... | inj₁ a = a
|
... | inj₁ a = a
|
||||||
|
@ -200,10 +257,10 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
||||||
|
|
||||||
delay-lift' : ∀ {A B : Set ℓ} → (A → B) → A ⊥ → B
|
delay-lift' : ∀ {A B : Set ℓ} → (A → B) → A ⊥ → B
|
||||||
delay-lift' {A} {B} f (now x) = f x
|
delay-lift' {A} {B} f (now x) = f x
|
||||||
delay-lift' {A} {B} f (later x) = {! !} -- (id + f ∘ out)#b
|
delay-lift' {A} {B} f (later x) = {! !} -- (id + f ∘ out)#b
|
||||||
|
|
||||||
delay-lift : ∀ {A : Setoid ℓ ℓ} {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
|
delay-lift : ∀ {A : Setoid ℓ ℓ} {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
|
||||||
delay-lift {A} {B} f = record { h = record { _⟨$⟩_ = delay-lift' {∣ A ∣} {∣ ⟦ B ⟧ ∣} (f ._⟨$⟩_) ; cong = {! !} } ; preserves = {! !} }
|
delay-lift {A} {B} f = record { h = (B Elgot-Algebra.#) {! ? ∘ out !} ; preserves = {! !} }
|
||||||
|
|
||||||
freeAlgebra : ∀ (A : Setoid ℓ ℓ) → FreeObject elgotForgetfulF A
|
freeAlgebra : ∀ (A : Setoid ℓ ℓ) → FreeObject elgotForgetfulF A
|
||||||
freeAlgebra A = record
|
freeAlgebra A = record
|
||||||
|
|
Loading…
Reference in a new issue