This commit is contained in:
Leon Vatthauer 2023-10-25 18:18:58 +02:00
parent 9dfd4145a2
commit 7e7ff5268f
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 31 additions and 10 deletions

View file

@ -30,15 +30,6 @@ module Monad.Instance.Delay.Commutative {o e} (ambient : Ambient o e) (D
open import Categories.Morphism.Properties C open import Categories.Morphism.Properties C
open Terminal using (!; !-unique; ) open Terminal using (!; !-unique; )
-- TODO should be in agda-categories
Kleisli⇒Monad⇒Kleisli : ∀ (K : KleisliTriple C) {X Y} (f : X ⇒ RMonad.F₀ K Y) → RMonad.extend (Monad⇒Kleisli C (Kleisli⇒Monad C K)) f ≈ RMonad.extend K f
Kleisli⇒Monad⇒Kleisli K {X} {Y} f = begin
extend idC ∘ extend (unit ∘ f) ≈⟨ sym k-assoc ⟩
extend (extend idC ∘ unit ∘ f) ≈⟨ extend-≈ (pullˡ k-identityʳ) ⟩
extend (idC ∘ f) ≈⟨ extend-≈ (identityˡ) ⟩
extend f ∎
where open RMonad K using (unit; extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ)
open DelayM D open DelayM D
open import Monad.Instance.Delay.Strong ambient D open import Monad.Instance.Delay.Strong ambient D
open Functor functor using () renaming (F₁ to D₁; identity to D-identity; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈) open Functor functor using () renaming (F₁ to D₁; identity to D-identity; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈)

View file

@ -0,0 +1,30 @@
<!--
```agda
open import Level
open import Category.Instance.AmbientCategory
open import Categories.Functor
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
```
-->
```agda
module Monad.Instance.Delay.Lemmas {o e} (ambient : Ambient o e) where
open Ambient ambient
open import Monad.Instance.Delay ambient
open import Monad.Instance.Delay.Strong ambient
open import Monad.Instance.Delay.Commutative ambient
open M C
```
# Helper Lemmas concerning the Delay Monad
```agda
module _ (D : DelayM) where
open DelayM D
module D = Functor functor
open RMonad kleisli using (extend)
Lemma47 : ⟨ D.₁ π₁ , D.₁ π₂ ⟩ SectionOf {! !}
Lemma47 = {! !}
```