mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
minor
This commit is contained in:
parent
9dfd4145a2
commit
7e7ff5268f
2 changed files with 31 additions and 10 deletions
|
@ -30,15 +30,6 @@ module Monad.Instance.Delay.Commutative {o ℓ e} (ambient : Ambient o ℓ e) (D
|
|||
open import Categories.Morphism.Properties C
|
||||
open Terminal using (!; !-unique; ⊤)
|
||||
|
||||
-- TODO should be in agda-categories
|
||||
Kleisli⇒Monad⇒Kleisli : ∀ (K : KleisliTriple C) {X Y} (f : X ⇒ RMonad.F₀ K Y) → RMonad.extend (Monad⇒Kleisli C (Kleisli⇒Monad C K)) f ≈ RMonad.extend K f
|
||||
Kleisli⇒Monad⇒Kleisli K {X} {Y} f = begin
|
||||
extend idC ∘ extend (unit ∘ f) ≈⟨ sym k-assoc ⟩
|
||||
extend (extend idC ∘ unit ∘ f) ≈⟨ extend-≈ (pullˡ k-identityʳ) ⟩
|
||||
extend (idC ∘ f) ≈⟨ extend-≈ (identityˡ) ⟩
|
||||
extend f ∎
|
||||
where open RMonad K using (unit; extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ)
|
||||
|
||||
open DelayM D
|
||||
open import Monad.Instance.Delay.Strong ambient D
|
||||
open Functor functor using () renaming (F₁ to D₁; identity to D-identity; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈)
|
||||
|
|
30
src/Monad/Instance/Delay/Lemmas.lagda.md
Normal file
30
src/Monad/Instance/Delay/Lemmas.lagda.md
Normal file
|
@ -0,0 +1,30 @@
|
|||
<!--
|
||||
```agda
|
||||
open import Level
|
||||
open import Category.Instance.AmbientCategory
|
||||
open import Categories.Functor
|
||||
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
|
||||
```
|
||||
-->
|
||||
|
||||
```agda
|
||||
module Monad.Instance.Delay.Lemmas {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||
open Ambient ambient
|
||||
open import Monad.Instance.Delay ambient
|
||||
open import Monad.Instance.Delay.Strong ambient
|
||||
open import Monad.Instance.Delay.Commutative ambient
|
||||
open M C
|
||||
```
|
||||
|
||||
# Helper Lemmas concerning the Delay Monad
|
||||
|
||||
```agda
|
||||
module _ (D : DelayM) where
|
||||
open DelayM D
|
||||
module D = Functor functor
|
||||
open RMonad kleisli using (extend)
|
||||
|
||||
|
||||
Lemma47 : ⟨ D.₁ π₁ , D.₁ π₂ ⟩ SectionOf {! !}
|
||||
Lemma47 = {! !}
|
||||
```
|
Loading…
Reference in a new issue