mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Add search-algebras, start work on elgot-algebra properties
This commit is contained in:
parent
481e1011e5
commit
7f3351dd6c
5 changed files with 174 additions and 89 deletions
41
src/Algebra/Elgot/Properties.lagda.md
Normal file
41
src/Algebra/Elgot/Properties.lagda.md
Normal file
|
@ -0,0 +1,41 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Category.Instance.AmbientCategory
|
||||||
|
open import Categories.Functor
|
||||||
|
open import Categories.Monad.Relative renaming (Monad to RMonad)
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
## Summary
|
||||||
|
Some properties of elgot-algebras, namely:
|
||||||
|
|
||||||
|
- Every elgot-algebra `(A, α : D₀ A ⇒ A)` satisfies `α (extend ι) ≈ α (D₁ π₁)` **[Lemma 32]**
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Algebra.Elgot.Properties {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
|
open Ambient ambient
|
||||||
|
open import Monad.Instance.Delay ambient using (DelayM)
|
||||||
|
open import Algebra.ElgotAlgebra ambient
|
||||||
|
open Equiv
|
||||||
|
open HomReasoning
|
||||||
|
|
||||||
|
module _ {D : DelayM} (algebra : Guarded-Elgot-Algebra (DelayM.functor D)) where
|
||||||
|
open DelayM D
|
||||||
|
open Functor functor renaming (F₁ to D₁)
|
||||||
|
open RMonad kleisli
|
||||||
|
open Guarded-Elgot-Algebra algebra
|
||||||
|
|
||||||
|
commutes : α ∘ extend ι ≈ α ∘ (D₁ π₁)
|
||||||
|
commutes = {! !}
|
||||||
|
where
|
||||||
|
α∘ι : α ∘ ι ≈ π₁
|
||||||
|
α∘ι = sym (begin
|
||||||
|
π₁ ≈⟨ unique {f = idC} {g = idC} (sym project₁) (sym project₁) ⟩
|
||||||
|
universal idC idC ≈⟨ {! !} ⟩
|
||||||
|
{! !} ≈⟨ {! !} ⟩
|
||||||
|
universal {! !} {! !} ≈˘⟨ unique {! !} {! !} ⟩
|
||||||
|
α ∘ ι ∎)
|
||||||
|
|
||||||
|
|
||||||
|
```
|
|
@ -24,8 +24,7 @@ module Algebra.ElgotAlgebra {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
|
|
||||||
### *Definition 7* Guarded Elgot Algebras
|
### *Definition 7* Guarded Elgot Algebras
|
||||||
```agda
|
```agda
|
||||||
module _ {F : Endofunctor C} (FA : F-Algebra F) where
|
record Guarded-Elgot-Algebra-on {F : Endofunctor C} (FA : F-Algebra F) : Set (o ⊔ ℓ ⊔ e) where
|
||||||
record Guarded-Elgot-Algebra : Set (o ⊔ ℓ ⊔ e) where
|
|
||||||
open Functor F public
|
open Functor F public
|
||||||
open F-Algebra FA public
|
open F-Algebra FA public
|
||||||
-- iteration operator
|
-- iteration operator
|
||||||
|
@ -45,6 +44,11 @@ module Algebra.ElgotAlgebra {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
→ f ≈ g
|
→ f ≈ g
|
||||||
→ (f #) ≈ (g #)
|
→ (f #) ≈ (g #)
|
||||||
|
|
||||||
|
record Guarded-Elgot-Algebra (F : Endofunctor C) : Set (o ⊔ ℓ ⊔ e) where
|
||||||
|
field
|
||||||
|
algebra : F-Algebra F
|
||||||
|
guarded-elgot-algebra-on : Guarded-Elgot-Algebra-on algebra
|
||||||
|
open Guarded-Elgot-Algebra-on guarded-elgot-algebra-on public
|
||||||
```
|
```
|
||||||
|
|
||||||
### *Proposition 10* Unguarded Elgot Algebras
|
### *Proposition 10* Unguarded Elgot Algebras
|
||||||
|
@ -136,21 +140,24 @@ Here we give a different Characterization and show that it is equal.
|
||||||
where open Functor (idF {C = C})
|
where open Functor (idF {C = C})
|
||||||
|
|
||||||
-- constructing an Id-Guarded Elgot-Algebra from an unguarded one
|
-- constructing an Id-Guarded Elgot-Algebra from an unguarded one
|
||||||
Unguarded→Id-Guarded : (EA : Elgot-Algebra) → Guarded-Elgot-Algebra (Id-Algebra (Elgot-Algebra.A EA))
|
Unguarded→Id-Guarded : (EA : Elgot-Algebra) → Guarded-Elgot-Algebra idF
|
||||||
Unguarded→Id-Guarded ea = record
|
Unguarded→Id-Guarded ea = record
|
||||||
|
{ algebra = Id-Algebra A
|
||||||
|
; guarded-elgot-algebra-on = record
|
||||||
{ _# = _#
|
{ _# = _#
|
||||||
; #-Fixpoint = λ {X} {f} → trans #-Fixpoint (sym (∘-resp-≈ˡ ([]-congˡ identityˡ)))
|
; #-Fixpoint = λ {X} {f} → trans #-Fixpoint (sym (∘-resp-≈ˡ ([]-congˡ identityˡ)))
|
||||||
; #-Uniformity = #-Uniformity
|
; #-Uniformity = #-Uniformity
|
||||||
; #-Compositionality = #-Compositionality
|
; #-Compositionality = #-Compositionality
|
||||||
; #-resp-≈ = #-resp-≈
|
; #-resp-≈ = #-resp-≈
|
||||||
}
|
}
|
||||||
|
}
|
||||||
where
|
where
|
||||||
open Elgot-Algebra ea
|
open Elgot-Algebra ea
|
||||||
open HomReasoning
|
open HomReasoning
|
||||||
open Equiv
|
open Equiv
|
||||||
|
|
||||||
-- constructing an unguarded Elgot-Algebra from an Id-Guarded one
|
-- constructing an unguarded Elgot-Algebra from an Id-Guarded one
|
||||||
Id-Guarded→Unguarded : ∀ {A : Obj} → Guarded-Elgot-Algebra (Id-Algebra A) → Elgot-Algebra
|
Id-Guarded→Unguarded : ∀ {A} → Guarded-Elgot-Algebra-on (Id-Algebra A) → Elgot-Algebra
|
||||||
Id-Guarded→Unguarded gea = record
|
Id-Guarded→Unguarded gea = record
|
||||||
{ A = A
|
{ A = A
|
||||||
; algebra = record
|
; algebra = record
|
||||||
|
@ -166,7 +173,7 @@ Here we give a different Characterization and show that it is equal.
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
where
|
where
|
||||||
open Guarded-Elgot-Algebra gea
|
open Guarded-Elgot-Algebra-on gea
|
||||||
open HomReasoning
|
open HomReasoning
|
||||||
open Equiv
|
open Equiv
|
||||||
left : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y}
|
left : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y}
|
||||||
|
|
29
src/Algebra/Search.lagda.md
Normal file
29
src/Algebra/Search.lagda.md
Normal file
|
@ -0,0 +1,29 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Category.Instance.AmbientCategory using (Ambient)
|
||||||
|
open import Categories.Functor.Algebra
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
## Summary
|
||||||
|
A *D-Algebra* `(A, α : D₀ A ⇒ A)` is called a *search-algebra* if it satiesfies
|
||||||
|
|
||||||
|
- α now ≈ id
|
||||||
|
- α ▷ ≈ α
|
||||||
|
|
||||||
|
## Code
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Algebra.Search {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||||
|
open Ambient ambient
|
||||||
|
open import Monad.Instance.Delay ambient using (DelayM)
|
||||||
|
|
||||||
|
module _ (D : DelayM) where
|
||||||
|
open DelayM D
|
||||||
|
|
||||||
|
record IsSearchAlgebra (algebra : F-Algebra functor) : Set e where
|
||||||
|
open F-Algebra algebra using (A; α)
|
||||||
|
field
|
||||||
|
identity₁ : α ∘ now ≈ idC
|
||||||
|
identity₂ : α ∘ ▷ ≈ α
|
||||||
|
```
|
|
@ -55,11 +55,9 @@ We can now define these functions by bisecting the isomorphism `out : DX ≅ X +
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
|
|
||||||
module _ (X : Obj) where
|
module _ {X : Obj} where
|
||||||
open Terminal (coalgebras X) using (⊤; !; !-unique)
|
open Terminal (coalgebras X) using (⊤; !; !-unique)
|
||||||
open F-Coalgebra ⊤ renaming (A to DX)
|
open F-Coalgebra ⊤ using () renaming (A to DX) public
|
||||||
|
|
||||||
D₀ = DX
|
|
||||||
|
|
||||||
out-≅ : DX ≅ X + DX
|
out-≅ : DX ≅ X + DX
|
||||||
out-≅ = colambek {F = X +- } (coalgebras X)
|
out-≅ = colambek {F = X +- } (coalgebras X)
|
||||||
|
@ -73,8 +71,12 @@ We can now define these functions by bisecting the isomorphism `out : DX ≅ X +
|
||||||
later : DX ⇒ DX
|
later : DX ⇒ DX
|
||||||
later = out⁻¹ ∘ i₂
|
later = out⁻¹ ∘ i₂
|
||||||
|
|
||||||
|
-- convenient notation
|
||||||
|
▷ = later
|
||||||
|
|
||||||
unitlaw : out ∘ now ≈ i₁
|
unitlaw : out ∘ now ≈ i₁
|
||||||
unitlaw = cancelˡ (_≅_.isoʳ out-≅)
|
unitlaw = cancelˡ (_≅_.isoʳ out-≅)
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use our terminal coalgebras to get a *coiteration operator* `coit`:
|
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use our terminal coalgebras to get a *coiteration operator* `coit`:
|
||||||
|
@ -100,6 +102,12 @@ TODO add diagram
|
||||||
|
|
||||||
ι : X × N ⇒ DX
|
ι : X × N ⇒ DX
|
||||||
ι = u (! {A = record { A = X × N ; α = _≅_.from iso }})
|
ι = u (! {A = record { A = X × N ; α = _≅_.from iso }})
|
||||||
|
|
||||||
|
```
|
||||||
|
Make `DX` conveniently accessible
|
||||||
|
```agda
|
||||||
|
D₀ : Obj → Obj
|
||||||
|
D₀ X = DX {X}
|
||||||
```
|
```
|
||||||
|
|
||||||
With these definitions at hand, we can now indeed construct a monad (in extension form) as the triple `(F₀, unit, extend)`.
|
With these definitions at hand, we can now indeed construct a monad (in extension form) as the triple `(F₀, unit, extend)`.
|
||||||
|
@ -112,7 +120,7 @@ TODO
|
||||||
kleisli : KleisliTriple C
|
kleisli : KleisliTriple C
|
||||||
kleisli = record
|
kleisli = record
|
||||||
{ F₀ = D₀
|
{ F₀ = D₀
|
||||||
; unit = λ {X} → now X
|
; unit = now
|
||||||
; extend = extend
|
; extend = extend
|
||||||
; identityʳ = identityʳ'
|
; identityʳ = identityʳ'
|
||||||
; identityˡ = identityˡ'
|
; identityˡ = identityˡ'
|
||||||
|
@ -124,7 +132,7 @@ TODO
|
||||||
open Terminal
|
open Terminal
|
||||||
module _ {X Y : Obj} (f : X ⇒ D₀ Y) where
|
module _ {X Y : Obj} (f : X ⇒ D₀ Y) where
|
||||||
alg : F-Coalgebra (Y +-)
|
alg : F-Coalgebra (Y +-)
|
||||||
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] }
|
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f) , i₂ ∘ i₁ ] ∘ out , (idC +₁ i₂) ∘ out ] }
|
||||||
|
|
||||||
extend : D₀ X ⇒ D₀ Y
|
extend : D₀ X ⇒ D₀ Y
|
||||||
extend = u (! (coalgebras Y) {A = alg}) ∘ i₁ {B = D₀ Y}
|
extend = u (! (coalgebras Y) {A = alg}) ∘ i₁ {B = D₀ Y}
|
||||||
|
@ -132,39 +140,39 @@ TODO
|
||||||
!∘i₂ : u (! (coalgebras Y) {A = alg}) ∘ i₂ ≈ idC
|
!∘i₂ : u (! (coalgebras Y) {A = alg}) ∘ i₂ ≈ idC
|
||||||
!∘i₂ = ⊤-id (coalgebras Y) (F-Coalgebras (Y +-) [ ! (coalgebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] )
|
!∘i₂ = ⊤-id (coalgebras Y) (F-Coalgebras (Y +-) [ ! (coalgebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] )
|
||||||
|
|
||||||
extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X
|
extendlaw : out ∘ extend ≈ [ out ∘ f , i₂ ∘ extend ] ∘ out
|
||||||
extendlaw = begin
|
extendlaw = begin
|
||||||
out Y ∘ extend ≈⟨ pullˡ (commutes (! (coalgebras Y) {A = alg})) ⟩
|
out ∘ extend ≈⟨ pullˡ (commutes (! (coalgebras Y) {A = alg})) ⟩
|
||||||
((idC +₁ (u (! (coalgebras Y)))) ∘ α alg) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
|
((idC +₁ (u (! (coalgebras Y)))) ∘ α alg) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
|
||||||
(idC +₁ (u (! (coalgebras Y)))) ∘ [ [ i₁ , i₂ ∘ i₂ ]
|
(idC +₁ (u (! (coalgebras Y)))) ∘ [ [ i₁ , i₂ ∘ i₂ ]
|
||||||
∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
|
∘ (out ∘ f) , i₂ ∘ i₁ ] ∘ out ≈⟨ pullˡ ∘[] ⟩
|
||||||
[ (idC +₁ (u (! (coalgebras Y)))) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
[ (idC +₁ (u (! (coalgebras Y)))) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f)
|
||||||
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
|
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₁ ] ∘ out ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
|
||||||
[ [ (idC +₁ (u (! (coalgebras Y)))) ∘ i₁
|
[ [ (idC +₁ (u (! (coalgebras Y)))) ∘ i₁
|
||||||
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₂ ] ∘ (out ∘ f)
|
||||||
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂
|
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out ≈⟨ ([]-cong₂
|
||||||
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
|
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
|
||||||
refl) ⟩∘⟨refl ⟩
|
refl) ⟩∘⟨refl ⟩
|
||||||
[ [ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₂ ] ∘ (out Y ∘ f)
|
[ [ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₂ ] ∘ (out ∘ f)
|
||||||
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂
|
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out ≈⟨ ([]-cong₂
|
||||||
(elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η))
|
(elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η))
|
||||||
assoc) ⟩∘⟨refl ⟩
|
assoc) ⟩∘⟨refl ⟩
|
||||||
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
|
[ out ∘ f , i₂ ∘ extend ] ∘ out ∎
|
||||||
|
|
||||||
extend-unique : (g : D₀ X ⇒ D₀ Y) → (out Y ∘ g ≈ [ out Y ∘ f , i₂ ∘ g ] ∘ out X) → extend ≈ g
|
extend-unique : (g : D₀ X ⇒ D₀ Y) → (out ∘ g ≈ [ out ∘ f , i₂ ∘ g ] ∘ out) → extend ≈ g
|
||||||
extend-unique g g-commutes = begin
|
extend-unique g g-commutes = begin
|
||||||
extend ≈⟨ (!-unique (coalgebras Y) (record { f = [ g , idC ] ; commutes = begin
|
extend ≈⟨ (!-unique (coalgebras Y) (record { f = [ g , idC ] ; commutes = begin
|
||||||
out Y ∘ [ g , idC ] ≈⟨ ∘[] ⟩
|
out ∘ [ g , idC ] ≈⟨ ∘[] ⟩
|
||||||
[ out Y ∘ g , out Y ∘ idC ] ≈⟨ []-cong₂ g-commutes identityʳ ⟩
|
[ out ∘ g , out ∘ idC ] ≈⟨ []-cong₂ g-commutes identityʳ ⟩
|
||||||
[ [ out Y ∘ f , i₂ ∘ g ] ∘ out X , out Y ] ≈˘⟨ []-cong₂
|
[ [ out ∘ f , i₂ ∘ g ] ∘ out , out ] ≈˘⟨ []-cong₂
|
||||||
(([]-cong₂
|
(([]-cong₂
|
||||||
(([]-cong₂ refl identityʳ) ⟩∘⟨refl ○ (elimˡ +-η))
|
(([]-cong₂ refl identityʳ) ⟩∘⟨refl ○ (elimˡ +-η))
|
||||||
refl)
|
refl)
|
||||||
⟩∘⟨refl)
|
⟩∘⟨refl)
|
||||||
refl ⟩
|
refl ⟩
|
||||||
[ [ [ i₁ , i₂ ∘ idC ] ∘ (out Y ∘ f)
|
[ [ [ i₁ , i₂ ∘ idC ] ∘ (out ∘ f)
|
||||||
, i₂ ∘ g ] ∘ out X
|
, i₂ ∘ g ] ∘ out
|
||||||
, out Y ] ≈˘⟨ []-cong₂
|
, out ] ≈˘⟨ []-cong₂
|
||||||
(([]-cong₂
|
(([]-cong₂
|
||||||
(([]-cong₂ identityʳ (pullʳ inject₂)) ⟩∘⟨refl)
|
(([]-cong₂ identityʳ (pullʳ inject₂)) ⟩∘⟨refl)
|
||||||
refl)
|
refl)
|
||||||
|
@ -172,9 +180,9 @@ TODO
|
||||||
refl
|
refl
|
||||||
⟩
|
⟩
|
||||||
[ [ [ i₁ ∘ idC
|
[ [ [ i₁ ∘ idC
|
||||||
, (i₂ ∘ [ g , idC ]) ∘ i₂ ] ∘ (out Y ∘ f)
|
, (i₂ ∘ [ g , idC ]) ∘ i₂ ] ∘ (out ∘ f)
|
||||||
, i₂ ∘ g ] ∘ out X
|
, i₂ ∘ g ] ∘ out
|
||||||
, out Y ] ≈˘⟨ []-cong₂
|
, out ] ≈˘⟨ []-cong₂
|
||||||
(([]-cong₂
|
(([]-cong₂
|
||||||
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
|
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
|
||||||
(pullʳ inject₁))
|
(pullʳ inject₁))
|
||||||
|
@ -182,16 +190,16 @@ TODO
|
||||||
(elimˡ (Functor.identity (Y +-)))
|
(elimˡ (Functor.identity (Y +-)))
|
||||||
⟩
|
⟩
|
||||||
[ [ [ (idC +₁ [ g , idC ]) ∘ i₁
|
[ [ [ (idC +₁ [ g , idC ]) ∘ i₁
|
||||||
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out ∘ f)
|
||||||
, (i₂ ∘ [ g , idC ]) ∘ i₁ ] ∘ out X
|
, (i₂ ∘ [ g , idC ]) ∘ i₁ ] ∘ out
|
||||||
, (idC +₁ idC) ∘ out Y ] ≈˘⟨ []-cong₂
|
, (idC +₁ idC) ∘ out ] ≈˘⟨ []-cong₂
|
||||||
(([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl)
|
(([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl)
|
||||||
((+₁-cong₂ identity² inject₂) ⟩∘⟨refl) ⟩
|
((+₁-cong₂ identity² inject₂) ⟩∘⟨refl) ⟩
|
||||||
[ [ (idC +₁ [ g , idC ]) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
[ [ (idC +₁ [ g , idC ]) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f)
|
||||||
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₁ ] ∘ out X
|
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₁ ] ∘ out
|
||||||
, (idC ∘ idC +₁ [ g , idC ] ∘ i₂) ∘ out Y ] ≈˘⟨ []-cong₂ (pullˡ ∘[]) (pullˡ +₁∘+₁) ⟩
|
, (idC ∘ idC +₁ [ g , idC ] ∘ i₂) ∘ out ] ≈˘⟨ []-cong₂ (pullˡ ∘[]) (pullˡ +₁∘+₁) ⟩
|
||||||
[ (idC +₁ [ g , idC ]) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X
|
[ (idC +₁ [ g , idC ]) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ f) , i₂ ∘ i₁ ] ∘ out
|
||||||
, (idC +₁ [ g , idC ]) ∘ (idC +₁ i₂) ∘ out Y ] ≈˘⟨ ∘[] ⟩
|
, (idC +₁ [ g , idC ]) ∘ (idC +₁ i₂) ∘ out ] ≈˘⟨ ∘[] ⟩
|
||||||
(idC +₁ [ g , idC ]) ∘ α alg ∎ })) ⟩∘⟨refl ⟩
|
(idC +₁ [ g , idC ]) ∘ α alg ∎ })) ⟩∘⟨refl ⟩
|
||||||
[ g , idC ] ∘ i₁ ≈⟨ inject₁ ⟩
|
[ g , idC ] ∘ i₁ ≈⟨ inject₁ ⟩
|
||||||
g ∎
|
g ∎
|
||||||
|
@ -218,38 +226,38 @@ TODO
|
||||||
}
|
}
|
||||||
where open Functor (Y +-) using (identity)
|
where open Functor (Y +-) using (identity)
|
||||||
|
|
||||||
identityʳ' : ∀ {X} {Y} {f} → extend f ∘ now X ≈ f
|
identityʳ' : ∀ {X Y : Obj} {f : X ⇒ D₀ Y} → extend f ∘ now {X} ≈ f
|
||||||
identityʳ' {X} {Y} {f} = begin
|
identityʳ' {X} {Y} {f} = begin
|
||||||
extend f ∘ now X ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩∘⟨refl ⟩
|
extend f ∘ now ≈⟨ insertˡ (_≅_.isoˡ out-≅) ⟩∘⟨refl ⟩
|
||||||
(out⁻¹ Y ∘ out Y ∘ extend f) ∘ now X ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩
|
(out⁻¹ ∘ out ∘ extend f) ∘ now ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩
|
||||||
(out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ out X) ∘ now X ≈⟨ pullʳ (pullʳ (unitlaw X)) ⟩
|
(out⁻¹ ∘ [ out ∘ f , i₂ ∘ extend f ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitlaw) ⟩
|
||||||
out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
|
out⁻¹ ∘ [ out ∘ f , i₂ ∘ extend f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
|
||||||
out⁻¹ Y ∘ out Y ∘ f ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) ⟩
|
out⁻¹ ∘ out ∘ f ≈⟨ cancelˡ (_≅_.isoˡ out-≅) ⟩
|
||||||
f ∎
|
f ∎
|
||||||
|
|
||||||
identityˡ' : ∀ {X} → extend (now X) ≈ idC
|
identityˡ' : ∀ {X} → extend now ≈ idC
|
||||||
identityˡ' {X} = Terminal.⊤-id (coalgebras X) (record { f = extend (now X) ; commutes = begin
|
identityˡ' {X} = Terminal.⊤-id (coalgebras X) (record { f = extend now ; commutes = begin
|
||||||
out X ∘ extend (now X) ≈⟨ pullˡ ((commutes (! (coalgebras X) {A = alg (now X)}))) ⟩
|
out ∘ extend now ≈⟨ pullˡ ((commutes (! (coalgebras X) {A = alg now}))) ⟩
|
||||||
((idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ α (alg (now X))) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
|
((idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ α (alg now)) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
|
||||||
(idC +₁ (u (! (coalgebras X) {A = alg (now X)})))
|
(idC +₁ (u (! (coalgebras X) {A = alg now})))
|
||||||
∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out X ∘ (now X)) , i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ unitlaw X) ○ inject₁) refl ⟩∘⟨refl ⟩
|
∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ now) , i₂ ∘ i₁ ] ∘ out ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ unitlaw) ○ inject₁) refl ⟩∘⟨refl ⟩
|
||||||
(idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
|
(idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out ≈⟨ pullˡ ∘[] ⟩
|
||||||
[ (idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₁
|
[ (idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ i₁
|
||||||
, (idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ []-cong₂ +₁∘i₁ (pullˡ +₁∘i₂) ⟩∘⟨refl ⟩
|
, (idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ i₂ ∘ i₁ ] ∘ out ≈⟨ []-cong₂ +₁∘i₁ (pullˡ +₁∘i₂) ⟩∘⟨refl ⟩
|
||||||
[ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₁ ] ∘ out X ≈⟨ []-cong₂ refl assoc ⟩∘⟨refl ⟩
|
[ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras X) {A = alg now}))) ∘ i₁ ] ∘ out ≈⟨ []-cong₂ refl assoc ⟩∘⟨refl ⟩
|
||||||
[ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
|
[ i₁ ∘ idC , i₂ ∘ (extend now) ] ∘ out ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
|
||||||
([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ elimˡ +-η ⟩∘⟨refl ⟩
|
([ i₁ , i₂ ] ∘ (idC +₁ extend now)) ∘ out ≈⟨ elimˡ +-η ⟩∘⟨refl ⟩
|
||||||
(idC +₁ extend (now X)) ∘ out X ∎ })
|
(idC +₁ extend now) ∘ out ∎ })
|
||||||
|
|
||||||
assoc' : ∀ {X} {Y} {Z} {g} {h} → extend (extend h ∘ g) ≈ extend h ∘ extend g
|
assoc' : ∀ {X Y Z : Obj} {g : X ⇒ D₀ Y} {h : Y ⇒ D₀ Z} → extend (extend h ∘ g) ≈ extend h ∘ extend g
|
||||||
assoc' {X} {Y} {Z} {g} {h} = extend-unique (extend h ∘ g) (extend h ∘ extend g) (begin
|
assoc' {X} {Y} {Z} {g} {h} = extend-unique (extend h ∘ g) (extend h ∘ extend g) (begin
|
||||||
out Z ∘ extend h ∘ extend g ≈⟨ pullˡ (extendlaw h) ⟩
|
out ∘ extend h ∘ extend g ≈⟨ pullˡ (extendlaw h) ⟩
|
||||||
([ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y) ∘ extend g ≈⟨ pullʳ (extendlaw g) ⟩
|
([ out ∘ h , i₂ ∘ extend h ] ∘ out) ∘ extend g ≈⟨ pullʳ (extendlaw g) ⟩
|
||||||
[ out Z ∘ h , i₂ ∘ extend h ] ∘ [ out Y ∘ g , i₂ ∘ extend g ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
|
[ out ∘ h , i₂ ∘ extend h ] ∘ [ out ∘ g , i₂ ∘ extend g ] ∘ out ≈⟨ pullˡ ∘[] ⟩
|
||||||
[ [ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y ∘ g
|
[ [ out ∘ h , i₂ ∘ extend h ] ∘ out ∘ g
|
||||||
, [ out Z ∘ h , i₂ ∘ extend h ] ∘ i₂ ∘ extend g ] ∘ out X ≈⟨ []-cong₂ (pullˡ (⟺ (extendlaw h))) (pullˡ inject₂) ⟩∘⟨refl ⟩
|
, [ out ∘ h , i₂ ∘ extend h ] ∘ i₂ ∘ extend g ] ∘ out ≈⟨ []-cong₂ (pullˡ (⟺ (extendlaw h))) (pullˡ inject₂) ⟩∘⟨refl ⟩
|
||||||
[ (out Z ∘ extend h) ∘ g , (i₂ ∘ extend h) ∘ extend g ] ∘ out X ≈⟨ ([]-cong₂ assoc assoc) ⟩∘⟨refl ⟩
|
[ (out ∘ extend h) ∘ g , (i₂ ∘ extend h) ∘ extend g ] ∘ out ≈⟨ ([]-cong₂ assoc assoc) ⟩∘⟨refl ⟩
|
||||||
[ out Z ∘ extend h ∘ g , i₂ ∘ extend h ∘ extend g ] ∘ out X ∎)
|
[ out ∘ extend h ∘ g , i₂ ∘ extend h ∘ extend g ] ∘ out ∎)
|
||||||
|
|
||||||
extend-≈' : ∀ {X} {Y} {f g : X ⇒ D₀ Y} → f ≈ g → extend f ≈ extend g
|
extend-≈' : ∀ {X} {Y} {f g : X ⇒ D₀ Y} → f ≈ g → extend f ≈ extend g
|
||||||
extend-≈' {X} {Y} {f} {g} eq = begin
|
extend-≈' {X} {Y} {f} {g} eq = begin
|
||||||
|
|
|
@ -22,6 +22,6 @@ module Monad.Instance.Delay.Quotienting {o ℓ e} (ambient : Ambient o ℓ e) wh
|
||||||
open Functor functor using () renaming (F₁ to D₁)
|
open Functor functor using () renaming (F₁ to D₁)
|
||||||
open RMonad kleisli
|
open RMonad kleisli
|
||||||
|
|
||||||
module _ {X : Obj} (coeq : Coequalizer (extend (ι X)) (D₁ π₁)) where
|
module _ {X : Obj} (coeq : Coequalizer (extend (ι {X})) (D₁ π₁)) where
|
||||||
-- TODO
|
-- TODO
|
||||||
```
|
```
|
Loading…
Reference in a new issue