mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
work on new proof principle
This commit is contained in:
parent
446d55f1f5
commit
7f336282ed
3 changed files with 154 additions and 106 deletions
|
@ -66,7 +66,57 @@ This file contains some typedefs and records concerning different algebras.
|
||||||
→ f ≈ g ∘ (idC ⁂ η)
|
→ f ≈ g ∘ (idC ⁂ η)
|
||||||
→ (∀ {Z : Obj} (h : Z ⇒ Uniform-Iteration-Algebra.A FY + Z) → g ∘ (idC ⁂ h #) ≈ Uniform-Iteration-Algebra._# B ((g +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)))
|
→ (∀ {Z : Obj} (h : Z ⇒ Uniform-Iteration-Algebra.A FY + Z) → g ∘ (idC ⁂ h #) ≈ Uniform-Iteration-Algebra._# B ((g +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)))
|
||||||
→ g ≈ [ B , f ]♯
|
→ g ≈ [ B , f ]♯
|
||||||
|
[_,_]♯ˡ : ∀ {X : Obj} (A : Uniform-Iteration-Algebra) (f : Y × X ⇒ Uniform-Iteration-Algebra.A A) → Uniform-Iteration-Algebra.A FY × X ⇒ Uniform-Iteration-Algebra.A A
|
||||||
|
[_,_]♯ˡ {X} A f = [ A , (f ∘ swap) ]♯ ∘ swap
|
||||||
|
♯ˡ-law : ∀ {X : Obj} {A : Uniform-Iteration-Algebra} (f : Y × X ⇒ Uniform-Iteration-Algebra.A A) → f ≈ [ A , f ]♯ˡ ∘ (η ⁂ idC)
|
||||||
|
♯ˡ-law {X} {A} f = begin
|
||||||
|
f ≈⟨ introʳ swap∘swap ⟩
|
||||||
|
f ∘ swap ∘ swap ≈⟨ pullˡ (♯-law (f ∘ swap)) ⟩
|
||||||
|
([ A , f ∘ swap ]♯ ∘ (idC ⁂ η)) ∘ swap ≈⟨ pullʳ (sym swap∘⁂) ⟩
|
||||||
|
[ A , (f ∘ swap) ]♯ ∘ swap ∘ (η ⁂ idC) ≈⟨ sym-assoc ⟩
|
||||||
|
([ A , (f ∘ swap) ]♯ ∘ swap) ∘ (η ⁂ idC) ∎
|
||||||
|
♯ˡ-preserving : ∀ {X : Obj} {B : Uniform-Iteration-Algebra} (f : Y × X ⇒ Uniform-Iteration-Algebra.A B) {Z : Obj} (h : Z ⇒ Uniform-Iteration-Algebra.A FY + Z) → [ B , f ]♯ˡ ∘ (h # ⁂ idC) ≈ Uniform-Iteration-Algebra._# B (([ B , f ]♯ˡ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC))
|
||||||
|
♯ˡ-preserving {X} {B} f {Z} h = begin
|
||||||
|
([ B , (f ∘ swap) ]♯ ∘ swap) ∘ ((h #) ⁂ idC) ≈⟨ pullʳ swap∘⁂ ⟩
|
||||||
|
[ B , (f ∘ swap) ]♯ ∘ (idC ⁂ h #) ∘ swap ≈⟨ pullˡ (♯-preserving (f ∘ swap) h) ⟩
|
||||||
|
(([ B , (f ∘ swap) ]♯ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #ᵇ ∘ swap ≈⟨ sym (#ᵇ-Uniformity uni-helper) ⟩
|
||||||
|
((([ B , (f ∘ swap) ]♯ ∘ swap) +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #ᵇ ∎
|
||||||
|
where
|
||||||
|
open Uniform-Iteration-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
|
||||||
|
uni-helper : (idC +₁ swap) ∘ ([ B , f ∘ swap ]♯ ∘ swap +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ≈ (([ B , f ∘ swap ]♯ coproducts.+₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ swap
|
||||||
|
uni-helper = begin
|
||||||
|
(idC +₁ swap) ∘ ([ B , f ∘ swap ]♯ ∘ swap +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ≈⟨ pullˡ +₁∘+₁ ⟩
|
||||||
|
(idC ∘ [ B , f ∘ swap ]♯ ∘ swap +₁ swap ∘ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
|
||||||
|
([ B , f ∘ swap ]♯ ∘ swap +₁ idC ∘ swap) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl ⟩
|
||||||
|
(([ B , f ∘ swap ]♯ +₁ idC) ∘ (swap +₁ swap)) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ≈⟨ pullʳ (pullˡ (sym distributeˡ⁻¹∘swap)) ⟩
|
||||||
|
([ B , f ∘ swap ]♯ +₁ idC) ∘ (distributeˡ⁻¹ ∘ swap) ∘ (h ⁂ idC) ≈⟨ (refl⟩∘⟨ (pullʳ swap∘⁂ ○ sym-assoc)) ○ sym-assoc ⟩
|
||||||
|
(([ B , f ∘ swap ]♯ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ swap ∎
|
||||||
|
♯ˡ-unique : ∀ {X : Obj} {B : Uniform-Iteration-Algebra} (f : Y × X ⇒ Uniform-Iteration-Algebra.A B) (g : Uniform-Iteration-Algebra.A FY × X ⇒ Uniform-Iteration-Algebra.A B)
|
||||||
|
→ f ≈ g ∘ (η ⁂ idC)
|
||||||
|
→ ({Z : Obj} (h : Z ⇒ Uniform-Iteration-Algebra.A FY + Z) → g ∘ (h # ⁂ idC) ≈ Uniform-Iteration-Algebra._# B ((g +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)))
|
||||||
|
→ g ≈ [ B , f ]♯ˡ
|
||||||
|
♯ˡ-unique {X} {B} f g g-law g-preserving = begin
|
||||||
|
g ≈⟨ introʳ swap∘swap ⟩
|
||||||
|
g ∘ swap ∘ swap ≈⟨ sym-assoc ⟩
|
||||||
|
(g ∘ swap) ∘ swap ≈⟨ (♯-unique (f ∘ swap) (g ∘ swap) helper₁ helper₂) ⟩∘⟨refl ⟩
|
||||||
|
[ B , (f ∘ swap) ]♯ ∘ swap ∎
|
||||||
|
where
|
||||||
|
open Uniform-Iteration-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
|
||||||
|
helper₁ : f ∘ swap ≈ (g ∘ swap) ∘ (idC ⁂ η)
|
||||||
|
helper₁ = begin
|
||||||
|
f ∘ swap ≈⟨ g-law ⟩∘⟨refl ⟩
|
||||||
|
(g ∘ (η ⁂ idC)) ∘ swap ≈⟨ pullʳ (sym swap∘⁂) ⟩
|
||||||
|
g ∘ swap ∘ (idC ⁂ η) ≈⟨ sym-assoc ⟩
|
||||||
|
(g ∘ swap) ∘ (idC ⁂ η) ∎
|
||||||
|
helper₂ : ∀ {Z : Obj} (h : Z ⇒ Uniform-Iteration-Algebra.A FY + Z) → (g ∘ swap) ∘ (idC ⁂ h #) ≈ ((g ∘ swap +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #ᵇ
|
||||||
|
helper₂ {Z} h = begin
|
||||||
|
(g ∘ swap) ∘ (idC ⁂ h #) ≈⟨ pullʳ swap∘⁂ ⟩
|
||||||
|
g ∘ (h # ⁂ idC) ∘ swap ≈⟨ pullˡ (g-preserving h) ⟩
|
||||||
|
((g +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #ᵇ ∘ swap ≈⟨ sym (#ᵇ-Uniformity uni-helper) ⟩
|
||||||
|
((g ∘ swap +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #ᵇ ∎
|
||||||
|
where
|
||||||
|
uni-helper : (idC +₁ swap) ∘ (g ∘ swap +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈ ((g +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) ∘ swap
|
||||||
|
uni-helper = pullˡ +₁∘+₁ ○ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ○ (sym +₁∘+₁) ⟩∘⟨refl ○ pullʳ (pullˡ (sym distributeʳ⁻¹∘swap)) ○ (refl⟩∘⟨ (pullʳ swap∘⁂ ○ sym-assoc)) ○ sym-assoc
|
||||||
record StableFreeUniformIterationAlgebra : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
record StableFreeUniformIterationAlgebra : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
||||||
field
|
field
|
||||||
Y : Obj
|
Y : Obj
|
||||||
|
|
|
@ -88,6 +88,15 @@ module Category.Instance.AmbientCategory where
|
||||||
[ (idC ⁂ i₁) ∘ swap , (idC ⁂ i₂) ∘ swap ] ∘ distributeʳ⁻¹ ≈⟨ sym (pullˡ []∘+₁) ⟩
|
[ (idC ⁂ i₁) ∘ swap , (idC ⁂ i₂) ∘ swap ] ∘ distributeʳ⁻¹ ≈⟨ sym (pullˡ []∘+₁) ⟩
|
||||||
distributeˡ ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ ∎)
|
distributeˡ ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ ∎)
|
||||||
|
|
||||||
|
distributeʳ⁻¹∘swap : ∀ {A B C : Obj} → distributeʳ⁻¹ ∘ swap ≈ (swap +₁ swap) ∘ distributeˡ⁻¹ {A} {B} {C}
|
||||||
|
distributeʳ⁻¹∘swap = Iso⇒Mono C (IsIso.iso isIsoʳ) (distributeʳ⁻¹ ∘ swap) ((swap +₁ swap) ∘ distributeˡ⁻¹) (begin
|
||||||
|
(distributeʳ ∘ distributeʳ⁻¹ ∘ swap) ≈⟨ cancelˡ (IsIso.isoʳ isIsoʳ) ⟩
|
||||||
|
swap ≈⟨ sym (cancelʳ (IsIso.isoʳ isIsoˡ)) ⟩
|
||||||
|
((swap ∘ distributeˡ) ∘ distributeˡ⁻¹) ≈⟨ (∘[] ⟩∘⟨refl) ⟩
|
||||||
|
[ swap ∘ (idC ⁂ i₁) , swap ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ sym (([]-cong₂ (sym swap∘⁂) (sym swap∘⁂)) ⟩∘⟨refl) ⟩
|
||||||
|
[ (i₁ ⁂ idC) ∘ swap , (i₂ ⁂ idC) ∘ swap ] ∘ distributeˡ⁻¹ ≈⟨ sym (pullˡ []∘+₁) ⟩
|
||||||
|
(distributeʳ ∘ (swap +₁ swap) ∘ distributeˡ⁻¹) ∎)
|
||||||
|
|
||||||
dstr-law₁ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₁) ≈ i₁
|
dstr-law₁ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₁) ≈ i₁
|
||||||
dstr-law₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ))
|
dstr-law₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ))
|
||||||
dstr-law₂ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₂) ≈ i₂
|
dstr-law₂ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₂) ≈ i₂
|
||||||
|
|
|
@ -13,17 +13,17 @@ import Monad.Instance.K as MIK
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
module Monad.Instance.K.Commutative {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
|
module Monad.Instance.K.Commutative {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
|
||||||
open Ambient ambient
|
open Ambient ambient
|
||||||
open MIK ambient
|
open MIK ambient
|
||||||
open MonadK MK
|
open MonadK MK
|
||||||
open import Monad.Instance.K.Strong ambient MK
|
open import Monad.Instance.K.Strong ambient MK
|
||||||
open import Category.Construction.UniformIterationAlgebras ambient
|
open import Category.Construction.UniformIterationAlgebras ambient
|
||||||
open import Algebra.UniformIterationAlgebra ambient
|
open import Algebra.UniformIterationAlgebra ambient
|
||||||
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
||||||
|
|
||||||
open Equiv
|
open Equiv
|
||||||
open HomReasoning
|
open HomReasoning
|
||||||
open MR C
|
open MR C
|
||||||
-- open M C
|
-- open M C
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -34,101 +34,90 @@ The proof is analogous to the ones for strength, the relevant diagram is:
|
||||||
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNyxbMCwxLCJLWCBcXHRpbWVzIEtZIl0sWzEsMCwiSyhLWCBcXHRpbWVzIFkpIl0sWzIsMCwiSyhLKFggXFx0aW1lcyBZKSkiXSxbMywxLCJLKFggXFx0aW1lcyBZKSJdLFsxLDIsIksoWCBcXHRpbWVzIEtZKSJdLFsyLDIsIksoSyhYIFxcdGltZXMgWSkpIl0sWzAsNCwiS1ggXFx0aW1lcyBZIl0sWzAsMSwiXFx0YXUiXSxbMSwyLCJLXFxoYXR7XFx0YXV9Il0sWzIsMywiXFxtdSJdLFswLDQsIlxcaGF0e1xcdGF1fSIsMl0sWzQsNSwiS1xcdGF1IiwyXSxbNSwzLCJcXG11IiwyXSxbNiwwLCJpZCBcXHRpbWVzIFxcZXRhIl0sWzYsMywiXFxoYXR7XFx0YXV9IiwwLHsiY3VydmUiOjV9XSxbMCwzLCJcXGhhdHtcXHRhdX1eXFwjIl1d&embed" width="974" height="688" style="border-radius: 8px; border: none;"></iframe>
|
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNyxbMCwxLCJLWCBcXHRpbWVzIEtZIl0sWzEsMCwiSyhLWCBcXHRpbWVzIFkpIl0sWzIsMCwiSyhLKFggXFx0aW1lcyBZKSkiXSxbMywxLCJLKFggXFx0aW1lcyBZKSJdLFsxLDIsIksoWCBcXHRpbWVzIEtZKSJdLFsyLDIsIksoSyhYIFxcdGltZXMgWSkpIl0sWzAsNCwiS1ggXFx0aW1lcyBZIl0sWzAsMSwiXFx0YXUiXSxbMSwyLCJLXFxoYXR7XFx0YXV9Il0sWzIsMywiXFxtdSJdLFswLDQsIlxcaGF0e1xcdGF1fSIsMl0sWzQsNSwiS1xcdGF1IiwyXSxbNSwzLCJcXG11IiwyXSxbNiwwLCJpZCBcXHRpbWVzIFxcZXRhIl0sWzYsMywiXFxoYXR7XFx0YXV9IiwwLHsiY3VydmUiOjV9XSxbMCwzLCJcXGhhdHtcXHRhdX1eXFwjIl1d&embed" width="974" height="688" style="border-radius: 8px; border: none;"></iframe>
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
KCommutative : CommutativeMonad {C = C} {V = monoidal} symmetric KStrong
|
|
||||||
KCommutative = record { commutes = commutes' }
|
|
||||||
where
|
|
||||||
open monadK using (μ)
|
|
||||||
open StrongMonad KStrong using (strengthen)
|
|
||||||
open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving; ♯-unique)
|
|
||||||
open Uniform-Iteration-Algebra using (#-Uniformity; #-Fixpoint; #-resp-≈)
|
|
||||||
|
|
||||||
-- some helper definitions to make our life easier
|
open monadK using (μ)
|
||||||
η = λ Z → FreeObject.η (freealgebras Z)
|
open StrongMonad KStrong using (strengthen)
|
||||||
_♯ = λ {A X Y} f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f
|
open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving; ♯-unique; ♯ˡ-unique; ♯ˡ-preserving; ♯ˡ-law)
|
||||||
_# = λ {A} {X} f → Uniform-Iteration-Algebra._# (algebras A) {X = X} f
|
open Uniform-Iteration-Algebra using (#-Uniformity; #-Fixpoint; #-resp-≈)
|
||||||
|
|
||||||
σ : ∀ ((X , Y) : Obj ×f Obj) → K.₀ X × Y ⇒ K.₀ (X × Y)
|
-- some helper definitions to make our life easier
|
||||||
σ _ = K.₁ swap ∘ (τ _) ∘ swap
|
private
|
||||||
|
η = λ Z → FreeObject.η (freealgebras Z)
|
||||||
|
_♯ = λ {A X Y} f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f
|
||||||
|
_♯ˡ = λ {A X Y} f → IsStableFreeUniformIterationAlgebra.[_,_]♯ˡ {Y = X} (stable X) {X = A} (algebras Y) f
|
||||||
|
_# = λ {A} {X} f → Uniform-Iteration-Algebra._# (algebras A) {X = X} f
|
||||||
|
|
||||||
σ-preserve : ∀ {X Y Z : Obj} (h : Z ⇒ K.₀ Y + Z) → σ (Y , X) ∘ (h # ⁂ idC) ≈ ((σ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC))#
|
σ : ∀ ((X , Y) : Obj ×f Obj) → K.₀ X × Y ⇒ K.₀ (X × Y)
|
||||||
{-
|
σ _ = K.₁ swap ∘ (τ _) ∘ swap
|
||||||
K.₁ swap ∘ τ ∘ swap ∘ (h # ⁂ idC)
|
|
||||||
≈ K.₁ swap ∘ τ ∘ (idC ⁂ h #) ∘ swap
|
proof-principle : ∀ {X Y} (f g : K.₀ X × K.₀ Y ⇒ K.₀ (X × Y)) → f ∘ (η _ ⁂ η _) ≈ g ∘ (η _ ⁂ η _) → (∀ {A} (h : A ⇒ K.₀ Y + A) → f ∘ (idC ⁂ h #) ≈ ((f +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#) → (∀ {A} (h : A ⇒ K.₀ X + A) → f ∘ (h # ⁂ idC) ≈ ((f +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #) → (∀ {A} (h : A ⇒ K.₀ Y + A) → g ∘ (idC ⁂ h #) ≈ ((g +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#) → (∀ {A} (h : A ⇒ K.₀ X + A) → g ∘ (h # ⁂ idC) ≈ ((g +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #) → f ≈ g
|
||||||
≈ K.₁ swap ∘ ()# ∘ swap
|
proof-principle {X} {Y} f g η-eq f-iter₁ f-iter₂ g-iter₁ g-iter₂ = begin
|
||||||
≈ ((K.₁ swap +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ swap
|
f ≈⟨ ♯-unique (stable _) (f ∘ (idC ⁂ η Y)) f refl (λ h → f-iter₁ h) ⟩
|
||||||
-}
|
(f ∘ (idC ⁂ η _)) ♯ ≈⟨ sym (♯-unique (stable _) (f ∘ (idC ⁂ η Y)) g helper₁ {! !}) ⟩
|
||||||
σ-preserve {Z} h = {! !}
|
g ∎
|
||||||
σ-preserve' : ∀ {X Y Z : Obj} (h : Z ⇒ K.₀ Y + Z) → σ (X , K.₀ Y) ∘ (idC ⁂ h #) ≈ ((σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
where
|
||||||
σ-preserve' {Z} h = {! !}
|
helper₁ : f ∘ (idC ⁂ η Y) ≈ g ∘ (idC ⁂ η Y)
|
||||||
commutes' : ∀ {X Y : Obj} → μ.η _ ∘ K.₁ (σ _) ∘ τ (K.₀ X , Y) ≈ μ.η _ ∘ K.₁ (τ _) ∘ σ _
|
helper₁ = begin
|
||||||
commutes' {X} {Y} = begin
|
f ∘ (idC ⁂ η Y) ≈⟨ ♯ˡ-unique (stable _) (f ∘ (η X ⁂ η Y)) (f ∘ (idC ⁂ η Y)) (sym (pullʳ (⁂∘⁂ ○ (⁂-cong₂ identityˡ identityʳ)))) {! !} ⟩
|
||||||
μ.η _ ∘ K.₁ (σ _) ∘ τ _ ≈⟨ ♯-unique (stable _) (σ _) (μ.η (X × Y) ∘ K.₁ (σ _) ∘ τ _) comm₁ comm₂ ⟩
|
(f ∘ (η X ⁂ η Y)) ♯ˡ ≈⟨ {! !} ⟩
|
||||||
(σ _) ♯ ≈⟨ sym (♯-unique (stable _) (σ _) (μ.η _ ∘ K.₁ (τ _) ∘ σ _) comm₃ comm₄) ⟩
|
g ∘ (idC ⁂ η Y) ∎
|
||||||
{! !} ≈⟨ {! !} ⟩
|
where
|
||||||
μ.η _ ∘ K.₁ (τ _) ∘ σ _ ∎
|
comm₁ : ∀ {Z : Obj} (h : Z ⇒ K.₀ X + Z) → (f ∘ (idC ⁂ η Y)) ∘ (h # ⁂ idC) ≈ ((f ∘ (idC ⁂ η Y) +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #
|
||||||
where
|
comm₁ {Z} h = begin
|
||||||
comm₁ : σ _ ≈ (μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ η _)
|
(f ∘ (idC ⁂ η Y)) ∘ (h # ⁂ idC) ≈⟨ pullʳ ⁂∘⁂ ⟩
|
||||||
comm₁ = sym (begin
|
f ∘ (idC ∘ h # ⁂ η Y ∘ idC) ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm-sym id-comm) ⟩
|
||||||
(μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ η _) ≈⟨ pullʳ (pullʳ (τ-η _)) ⟩
|
f ∘ (h # ∘ idC ⁂ idC ∘ η Y) ≈⟨ refl⟩∘⟨ sym ⁂∘⁂ ⟩
|
||||||
μ.η _ ∘ K.₁ (σ _) ∘ η _ ≈⟨ refl⟩∘⟨ (K₁η _) ⟩
|
f ∘ (h # ⁂ idC) ∘ (idC ⁂ η Y) ≈⟨ pullˡ (f-iter₂ h) ⟩
|
||||||
μ.η _ ∘ η _ ∘ σ _ ≈⟨ cancelˡ monadK.identityʳ ⟩
|
(((f +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #) ∘ (idC ⁂ η Y) ≈⟨ sym (#-Uniformity (algebras _) uni-helper) ⟩
|
||||||
σ _ ∎)
|
((f ∘ (idC ⁂ η Y) +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) # ∎
|
||||||
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K.₁ (σ _) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
where
|
||||||
comm₂ {Z} h = begin
|
uni-helper : (idC +₁ idC ⁂ η Y) ∘ (f ∘ (idC ⁂ η Y) +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ≈ ((f +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) ∘ (idC ⁂ η Y)
|
||||||
(μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (pullʳ (♯-preserving (stable _) (η _) h)) ⟩
|
uni-helper = {! !}
|
||||||
μ.η _ ∘ K.₁ (σ _) ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ refl⟩∘⟨ (Uniform-Iteration-Algebra-Morphism.preserves ((freealgebras _ FreeObject.*) (η _ ∘ σ _))) ⟩
|
|
||||||
μ.η _ ∘ ((K.₁ (σ _) +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC) ⟩
|
KCommutative : CommutativeMonad {C = C} {V = monoidal} symmetric KStrong
|
||||||
((μ.η _ +₁ idC) ∘ (K.₁ (σ _) +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
KCommutative = record { commutes = commutes' }
|
||||||
((μ.η _ ∘ K.₁ (σ _) +₁ idC ∘ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
where
|
||||||
(((μ.η _ ∘ K.₁ (σ _)) ∘ τ _ +₁ (idC ∘ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ assoc (elimˡ identity²)) ⟩∘⟨refl) ⟩
|
commutes' : ∀ {X Y : Obj} → μ.η _ ∘ K.₁ (σ _) ∘ τ (K.₀ X , Y) ≈ μ.η _ ∘ K.₁ (τ _) ∘ σ _
|
||||||
((μ.η _ ∘ K.₁ (σ _) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
commutes' {X} {Y} = begin
|
||||||
comm₃ : σ _ ≈ (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ η _)
|
μ.η _ ∘ K.₁ (σ _) ∘ τ _ ≈⟨ ♯-unique (stable _) (σ _) (μ.η (X × Y) ∘ K.₁ (σ _) ∘ τ _) comm₁ comm₂ ⟩
|
||||||
comm₃ = sym (begin
|
(σ _) ♯ ≈⟨ sym (♯-unique (stable _) (σ _) (μ.η _ ∘ K.₁ (τ _) ∘ σ _) comm₃ comm₄) ⟩
|
||||||
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ η _) ≈⟨ pullʳ (pullʳ (pullʳ (pullʳ swap∘⁂))) ⟩
|
{! !} ≈⟨ {! !} ⟩
|
||||||
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ τ _ ∘ (η _ ⁂ idC) ∘ swap ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ refl (sym K.identity) ⟩∘⟨refl ⟩
|
μ.η _ ∘ K.₁ (τ _) ∘ σ _ ∎
|
||||||
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ τ _ ∘ (η _ ⁂ K.₁ idC) ∘ swap ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (strengthen.commute (η _ , idC)) ⟩
|
where
|
||||||
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ (K.₁ (η _ ⁂ idC) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (pullˡ (sym K.homomorphism)) ⟩
|
comm₁ : σ _ ≈ (μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ η _)
|
||||||
μ.η _ ∘ K.₁ (τ _) ∘ (K.₁ (swap ∘ (η _ ⁂ idC)) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ (pullˡ (pullˡ (sym K.homomorphism))) ⟩
|
comm₁ = sym (begin
|
||||||
μ.η _ ∘ (K.₁ (τ _ ∘ swap ∘ (η _ ⁂ idC)) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ (((K.F-resp-≈ (refl⟩∘⟨ swap∘⁂)) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
(μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ η _) ≈⟨ pullʳ (pullʳ (τ-η _)) ⟩
|
||||||
μ.η _ ∘ (K.₁ (τ _ ∘ (idC ⁂ η _) ∘ swap) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ (K.F-resp-≈ (pullˡ (τ-η _))) ⟩∘⟨refl ⟩∘⟨refl ⟩
|
μ.η _ ∘ K.₁ (σ _) ∘ η _ ≈⟨ refl⟩∘⟨ (K₁η _) ⟩
|
||||||
μ.η _ ∘ (K.₁ (η _ ∘ swap) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ ((K.homomorphism ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
μ.η _ ∘ η _ ∘ σ _ ≈⟨ cancelˡ monadK.identityʳ ⟩
|
||||||
μ.η _ ∘ ((K.₁ (η _) ∘ K.₁ swap) ∘ τ _) ∘ swap ≈⟨ pullˡ (pullˡ (cancelˡ monadK.identityˡ)) ⟩
|
σ _ ∎)
|
||||||
(K.₁ swap ∘ τ _) ∘ swap ≈⟨ assoc ⟩
|
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K.₁ (σ _) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
||||||
σ _ ∎)
|
comm₂ {Z} h = begin
|
||||||
comm₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
(μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (pullʳ (♯-preserving (stable _) (η _) h)) ⟩
|
||||||
comm₄ {Z} h = begin
|
μ.η _ ∘ K.₁ (σ _) ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ refl⟩∘⟨ (Uniform-Iteration-Algebra-Morphism.preserves ((freealgebras _ FreeObject.*) (η _ ∘ σ _))) ⟩
|
||||||
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈⟨ {! !} ⟩
|
μ.η _ ∘ ((K.₁ (σ _) +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC) ⟩
|
||||||
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ ((i₁ # ∘ idC) ⁂ h #) ≈˘⟨ {! !} ⟩
|
((μ.η _ +₁ idC) ∘ (K.₁ (σ _) +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
||||||
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (((i₁ #) ⁂ h #)) ≈˘⟨ refl⟩∘⟨ ⟨⟩-cong₂ (#-Uniformity (algebras _) helper₁) {! !} ⟩
|
((μ.η _ ∘ K.₁ (σ _) +₁ idC ∘ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
|
||||||
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ ⟨ ((π₁ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # , ((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ⟩ ≈⟨ {! !} ⟩
|
(((μ.η _ ∘ K.₁ (σ _)) ∘ τ _ +₁ (idC ∘ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ assoc (elimˡ identity²)) ⟩∘⟨refl) ⟩
|
||||||
{! !} ≈⟨ {! !} ⟩
|
((μ.η _ ∘ K.₁ (σ _) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
||||||
{! !} ≈⟨ {! !} ⟩
|
comm₃ : σ _ ≈ (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ η _)
|
||||||
{! !} ≈⟨ {! !} ⟩
|
comm₃ = sym (begin
|
||||||
((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ η _) ≈⟨ pullʳ (pullʳ (pullʳ (pullʳ swap∘⁂))) ⟩
|
||||||
where
|
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ τ _ ∘ (η _ ⁂ idC) ∘ swap ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ refl (sym K.identity) ⟩∘⟨refl ⟩
|
||||||
-- this leads nowhere
|
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ τ _ ∘ (η _ ⁂ K.₁ idC) ∘ swap ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (strengthen.commute (η _ , idC)) ⟩
|
||||||
helper₁ : (idC +₁ π₁) ∘ (π₁ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈ i₁ ∘ π₁
|
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ (K.₁ (η _ ⁂ idC) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (pullˡ (sym K.homomorphism)) ⟩
|
||||||
helper₁ = begin
|
μ.η _ ∘ K.₁ (τ _) ∘ (K.₁ (swap ∘ (η _ ⁂ idC)) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ (pullˡ (pullˡ (sym K.homomorphism))) ⟩
|
||||||
(idC +₁ π₁) ∘ (π₁ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ identityʳ) ⟩
|
μ.η _ ∘ (K.₁ (τ _ ∘ swap ∘ (η _ ⁂ idC)) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ (((K.F-resp-≈ (refl⟩∘⟨ swap∘⁂)) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
||||||
(π₁ +₁ π₁) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ {! !} ⟩
|
μ.η _ ∘ (K.₁ (τ _ ∘ (idC ⁂ η _) ∘ swap) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ (K.F-resp-≈ (pullˡ (τ-η _))) ⟩∘⟨refl ⟩∘⟨refl ⟩
|
||||||
i₁ ∘ π₁ ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ π₁∘⁂ ⟩
|
μ.η _ ∘ (K.₁ (η _ ∘ swap) ∘ τ _) ∘ swap ≈⟨ refl⟩∘⟨ ((K.homomorphism ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
||||||
i₁ ∘ idC ∘ π₁ ≈⟨ refl⟩∘⟨ identityˡ ⟩
|
μ.η _ ∘ ((K.₁ (η _) ∘ K.₁ swap) ∘ τ _) ∘ swap ≈⟨ pullˡ (pullˡ (cancelˡ monadK.identityˡ)) ⟩
|
||||||
i₁ ∘ π₁ ∎
|
(K.₁ swap ∘ τ _) ∘ swap ≈⟨ assoc ⟩
|
||||||
test : ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ swap ≈ ((τ (X , Y) ∘ swap +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #
|
σ _ ∎)
|
||||||
test = sym (#-Uniformity (algebras _) (sym (begin
|
comm₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
|
||||||
((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ swap ≈⟨ pullʳ (pullʳ (sym swap∘⁂)) ⟩
|
comm₄ {Z} h = begin
|
||||||
(τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ swap ∘ (h ⁂ idC) ≈⟨ refl⟩∘⟨ (pullˡ distributeˡ⁻¹∘swap) ⟩
|
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈⟨ {! !} ⟩
|
||||||
(τ (X , Y) +₁ idC) ∘ ((swap +₁ swap) ∘ distributeʳ⁻¹) ∘ (h ⁂ idC) ≈⟨ pullˡ (pullˡ (+₁∘+₁ ○ +₁-cong₂ (sym identityˡ) id-comm-sym)) ⟩
|
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ ((i₁ # ∘ idC) ⁂ h #) ≈˘⟨ {! !} ⟩
|
||||||
((idC ∘ τ (X , Y) ∘ swap +₁ swap ∘ idC) ∘ distributeʳ⁻¹) ∘ (h ⁂ idC) ≈⟨ assoc ○ (sym +₁∘+₁) ⟩∘⟨refl ⟩
|
{! !} ≈⟨ {! !} ⟩
|
||||||
((idC +₁ swap) ∘ (τ (X , Y) ∘ swap +₁ idC)) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ≈⟨ assoc ⟩
|
{! !} ≈⟨ {! !} ⟩
|
||||||
(idC +₁ swap) ∘ (τ (X , Y) ∘ swap +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC) ∎)))
|
{! !} ≈⟨ {! !} ⟩
|
||||||
helper : τ _ ∘ (h # ⁂ idC) ∘ swap ≈ ((τ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) # ∘ swap
|
((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
|
||||||
helper = {! !}
|
|
||||||
τ∘swap-preserving : τ (K.₀ Y , X) ∘ (h # ⁂ idC) ≈ ((τ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #
|
|
||||||
τ∘swap-preserving = begin
|
|
||||||
τ (K.₀ Y , X) ∘ (h # ⁂ idC) ≈⟨ {! !} ⟩
|
|
||||||
τ (K.₀ Y , X) ∘ (h # ⁂ K.₁ idC) ≈⟨ {! !} ⟩
|
|
||||||
K.₁ (h # ⁂ idC) ∘ τ _ ≈⟨ {! !} ⟩
|
|
||||||
{! !} ≈⟨ {! !} ⟩
|
|
||||||
((τ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) # ∎
|
|
||||||
```
|
```
|
Loading…
Reference in a new issue