diff --git a/public/ElgotAlgebra.html b/public/ElgotAlgebra.html index 80f4eee..acf1ccb 100644 --- a/public/ElgotAlgebra.html +++ b/public/ElgotAlgebra.html @@ -11,8 +11,11 @@ div.columns{display: flex; gap: min(4vw, 1.5em);} div.column{flex: auto; overflow-x: auto;} div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} - ul.task-list{list-style: none;} + /* The extra [class] is a hack that increases specificity enough to + override a similar rule in reveal.js */ + ul.task-list[class]{list-style: none;} ul.task-list li input[type="checkbox"] { + font-size: inherit; width: 0.8em; margin: 0 0.8em 0.2em -1.6em; vertical-align: middle; @@ -40,13 +43,13 @@

Summary

This file introduces (guarded) elgot algebras

Code

module ElgotAlgebra where
diff --git a/public/ElgotAlgebras.html b/public/ElgotAlgebras.html
index ad65c42..e602a6c 100644
--- a/public/ElgotAlgebras.html
+++ b/public/ElgotAlgebras.html
@@ -11,8 +11,11 @@
     div.columns{display: flex; gap: min(4vw, 1.5em);}
     div.column{flex: auto; overflow-x: auto;}
     div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-    ul.task-list{list-style: none;}
+    /* The extra [class] is a hack that increases specificity enough to
+       override a similar rule in reveal.js */
+    ul.task-list[class]{list-style: none;}
     ul.task-list li input[type="checkbox"] {
+      font-size: inherit;
       width: 0.8em;
       margin: 0 0.8em 0.2em -1.6em;
       vertical-align: middle;
@@ -48,12 +51,12 @@
 

This file introduces the category of unguarded elgot algebras

Code

module ElgotAlgebras where
diff --git a/public/Monad.ElgotMonad.html b/public/Monad.ElgotMonad.html
index 4df0531..628c103 100644
--- a/public/Monad.ElgotMonad.html
+++ b/public/Monad.ElgotMonad.html
@@ -11,8 +11,11 @@
     div.columns{display: flex; gap: min(4vw, 1.5em);}
     div.column{flex: auto; overflow-x: auto;}
     div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-    ul.task-list{list-style: none;}
+    /* The extra [class] is a hack that increases specificity enough to
+       override a similar rule in reveal.js */
+    ul.task-list[class]{list-style: none;}
     ul.task-list li input[type="checkbox"] {
+      font-size: inherit;
       width: 0.8em;
       margin: 0 0.8em 0.2em -1.6em;
       vertical-align: middle;
@@ -44,16 +47,16 @@
 

Summary

This file introduces Elgot Monads.

Code

module Monad.ElgotMonad {o  e} (ED : ExtensiveDistributiveCategory o  e) where
diff --git a/public/Monad.Instance.Delay.html b/public/Monad.Instance.Delay.html
index 21d3ca7..3765c49 100644
--- a/public/Monad.Instance.Delay.html
+++ b/public/Monad.Instance.Delay.html
@@ -11,8 +11,11 @@
     div.columns{display: flex; gap: min(4vw, 1.5em);}
     div.column{flex: auto; overflow-x: auto;}
     div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-    ul.task-list{list-style: none;}
+    /* The extra [class] is a hack that increases specificity enough to
+       override a similar rule in reveal.js */
+    ul.task-list[class]{list-style: none;}
     ul.task-list li input[type="checkbox"] {
+      font-size: inherit;
       width: 0.8em;
       margin: 0 0.8em 0.2em -1.6em;
       vertical-align: middle;
@@ -26,136 +29,230 @@
 
 
 
 

Summary

This file introduces the delay monad D

    -
  • Proposition -1 Characterization of the delay monad D -(here treated as definition)
  • -
  • Proposition 2 -D is commutative
  • +
  • +

Code

-
module Monad.Instance.Delay {o  e} (ED : ExtensiveDistributiveCategory o  e) where
-  open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
-  open Cocartesian (Extensive.cocartesian extensive)
-  open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
-  open BinaryProducts products
+
module Monad.Instance.Delay {o  e} (ED : ExtensiveDistributiveCategory o  e) where
+  open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
+  open Cocartesian (Extensive.cocartesian extensive)
+  open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
+  open BinaryProducts products
 
-  open M C
-  open MR C
-  open Equiv
-  open HomReasoning
-  open CoLambek
+  open M C
+  open MR C
+  open Equiv
+  open HomReasoning
+  open CoLambek
 

Proposition 1: Characterization of the delay monad D

-

First I postulate the Functor D, maybe I should derive it… -TODO: - how to define using final coalgebra(s)? - DX -can be defined as retract of infinite streams, how? - how to express -Theorem 8 in agda?

-
  record DelayFunctor : Set (o    e) where
-    field
-      D : Endofunctor C
+
  delayF : Obj  Endofunctor C
+  delayF Y = record
+    { F₀ = Y +_
+    ; F₁ = idC +₁_
+    ; identity = CC.coproduct.unique id-comm-sym id-comm-sym
+    ; homomorphism =  (+₁∘+₁  +₁-cong₂ identity² refl) 
+    ; F-resp-≈ = +₁-cong₂ refl
+    }
 
-    open Functor D public renaming (F₀ to D₀; F₁ to D₁)
+  record DelayM : Set (o    e) where
+    field
+      algebras :  (A : Obj)  Terminal (F-Coalgebras (delayF A))
+    
+    module D A = Functor (delayF A)
 
-    field
-      now :  {X}  X  D₀ X
-      later :  {X}  D₀ X  D₀ X
-      isIso :  {X}  IsIso [ now {X} , later {X} ]
+    module _ (X : Obj) where
+      open Terminal (algebras X) using (; !)
+      open F-Coalgebra  renaming (A to DX)
 
-    out :  {X}  D₀ X  X + D₀ X
-    out {X} = IsIso.inv (isIso {X})
+      D₀ = DX
 
-    field
-      coit :  {X Y}  Y  X + Y  Y  D₀ X
-      coit-law :  {X Y} {f : Y  X + Y}  out  (coit f)  (idC +₁ (coit f))  f
+      out-≅ : DX  X + DX
+      out-≅ = colambek {F = delayF X} (algebras X)
+
+      -- note: out-≅.from ≡ ⊤.α
+      open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public
+
+      now : X  DX
+      now = out⁻¹  i₁
+
+      later : DX  DX
+      later = out⁻¹  i₂
+
+      -- TODO inline
+      unitlaw : out  now  i₁
+      unitlaw = cancelˡ (_≅_.isoʳ out-≅)
+
+      module _ {Y : Obj} where 
+        coit : Y  X + Y  Y  DX
+        coit f = F-Coalgebra-Morphism.f (! {A = record { A = Y ; α = f }})
+
+        coit-commutes :  (f : Y  X + Y)  out  (coit f)  (idC +₁ coit f)  f
+        coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
+
+    monad : Monad C
+    monad = Kleisli⇒Monad C (record
+      { F₀ = D₀ 
+      ; unit = λ {X}  now X
+      ; extend = extend
+      ; identityʳ = λ {X} {Y} {f}  begin 
+        extend f  now X                                          ≈⟨ (insertˡ (_≅_.isoˡ (out-≅ Y))) ⟩∘⟨refl  
+        (out⁻¹ Y  out Y  extend f)  now X                      ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl 
+        (out⁻¹ Y  [ out Y  f , i₂  extend f ]  out X)  now X ≈⟨ pullʳ (pullʳ (unitlaw X)) 
+        out⁻¹ Y  [ out Y  f , i₂  extend f ]  i₁              ≈⟨ refl⟩∘⟨ inject₁ 
+        out⁻¹ Y  out Y  f                                       ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) 
+        f                                                         
+      ; identityˡ = λ {X}  Terminal.⊤-id (algebras X) (record { f = extend (now X) ; commutes = begin 
+        out X  extend (now X)                                                                                             ≈⟨ pullˡ ((F-Coalgebra-Morphism.commutes (Terminal.! (algebras X) {A = alg (now X)})))  
+        ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  F-Coalgebra.α (alg (now X)))  i₁ ≈⟨ pullʳ inject₁ 
+        (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) 
+         [ [ i₁ , i₂  i₂ ]  (out X  (now X)) , i₂  i₁ ]  out X                                                       ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ (unitlaw X))  inject₁) refl ⟩∘⟨refl 
+        (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  [ i₁ , i₂  i₁ ]  out X           ≈⟨ pullˡ ∘[] 
+        [ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₁ 
+        , (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₂  i₁ ]  out X                ≈⟨ ([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl 
+        [ i₁  idC , (i₂  (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₁ ]  out X            ≈⟨ ([]-cong₂ refl assoc) ⟩∘⟨refl 
+        [ i₁  idC , i₂  (extend (now X)) ]  out X                                                                       ≈˘⟨ []∘+₁ ⟩∘⟨refl 
+        ([ i₁ , i₂ ]  (idC +₁ extend (now X)))  out X                                                                    ≈⟨ (elimˡ +-η) ⟩∘⟨refl 
+        (idC +₁ extend (now X))  out X                                                                                     })
+      ; assoc = {!   !}
+      ; sym-assoc = {!   !}
+      ; extend-≈ = λ {X} {Y} {f} {g} eq  {!   !}
+      
+        -- begin 
+        --   extend f ≈⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend f ; commutes = F-Coalgebra-Morphism.commutes {!   !} })) ⟩ 
+        --   F-Coalgebra-Morphism.f ((Terminal.! (algebras Y) {A = alg' {X} {Y}})) ≈˘⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend g ; commutes = {!   !} })) ⟩
+        --   extend g ∎
+      
+        -- let 
+        --   h : F-Coalgebra-Morphism (alg f) (alg g)
+        --   h = record { f = idC ; commutes = begin 
+        --     F-Coalgebra.α (alg g) ∘ idC ≈⟨ id-comm ⟩ 
+        --     idC ∘ F-Coalgebra.α (alg g) ≈⟨ refl⟩∘⟨ []-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ (sym eq))) refl) ⟩∘⟨refl) refl ⟩ 
+        --     idC ∘ F-Coalgebra.α (alg f) ≈˘⟨ ([]-cong₂ identityʳ identityʳ ○ +-η) ⟩∘⟨refl ⟩
+        --     (idC +₁ idC) ∘ F-Coalgebra.α (alg f) ∎ }
+        --   x : F-Coalgebra-Morphism (alg f) (Terminal.⊤ (algebras Y))
+        --   x = (F-Coalgebras (delayF Y)) [ Terminal.! (algebras Y) ∘ h ]
+        -- in Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = {!   !} } ⟩∘⟨refl
+        
+        -- extend f ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩ 
+        -- out⁻¹ Y ∘ out Y ∘ extend f ≈⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg f})) ⟩
+        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ ((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y) {A = alg f}} {g = Terminal.! (algebras Y) {A = alg f}}) ⟩∘⟨ ([]-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ eq)) refl) ⟩∘⟨refl) refl)) ⟩∘⟨refl) ⟩
+        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ (((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = record { f = F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ; commutes = {!   !} }})) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
+        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈˘⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg g})) ⟩
+        -- out⁻¹ Y ∘ out Y ∘ extend g ≈˘⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩
+        -- extend g ∎
+      })
+      where
+        alg' :  {X Y}  F-Coalgebra (delayF Y)
+        alg' {X} {Y} = record { A = D₀ X ; α = i₂ }
+        module _ {X Y : Obj} (f : X  D₀ Y) where
+          open Terminal (algebras Y) using (!; ⊤-id)
+          alg : F-Coalgebra (delayF Y)
+          alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂  i₂ ]  (out Y  f) , i₂  i₁ ]  out X , (idC +₁ i₂)  out Y ] }  -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm)
+          extend : D₀ X  D₀ Y
+          extend = F-Coalgebra-Morphism.f (! {A = alg})  i₁ {B = D₀ Y}
+          !∘i₂ : F-Coalgebra-Morphism.f (! {A = alg})  i₂  idC
+          !∘i₂ = ⊤-id (F-Coalgebras (delayF Y) [ !  record { f = i₂ ; commutes = inject₂ } ] )
+          extendlaw : out Y  extend  [ out Y  f , i₂  extend ]  out X
+          extendlaw = begin 
+            out Y  extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! {A = alg}))  
+            ((idC +₁ (F-Coalgebra-Morphism.f !))  F-Coalgebra.α alg)  coproduct.i₁                   ≈⟨ pullʳ inject₁ 
+            (idC +₁ (F-Coalgebra-Morphism.f !))  [ [ i₁ , i₂  i₂ ]  (out Y  f) , i₂  i₁ ]  out X ≈⟨ pullˡ ∘[] 
+            [ (idC +₁ (F-Coalgebra-Morphism.f !))  [ i₁ , i₂  i₂ ]  (out Y  f) 
+            , (idC +₁ (F-Coalgebra-Morphism.f !))  i₂  i₁ ]  out X                                  ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl 
+            [ [ (idC +₁ (F-Coalgebra-Morphism.f !))  i₁ 
+              , (idC +₁ (F-Coalgebra-Morphism.f !))  i₂  i₂ ]  (out Y  f) 
+            , (i₂  (F-Coalgebra-Morphism.f !))  i₁ ]  out X                                         ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl 
+            [ [ i₁  idC , (i₂  (F-Coalgebra-Morphism.f !))  i₂ ]  (out Y  f) 
+            , (i₂  (F-Coalgebra-Morphism.f !))  i₁ ]  out X                                         ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂))  +-η)) assoc) ⟩∘⟨refl 
+            [ out Y  f , i₂  extend ]  out X  
 
-

Now let’s define the monad:

-
  record DelayMonad : Set (o    e) where
-    field
-      D : DelayFunctor
-    open DelayFunctor D
+

Old definitions:

+
  record DelayMonad : Set (o    e) where
+    field
+      D₀ : Obj  Obj
 
-    field
-      _* :  {X Y}  X  D₀ Y  D₀ X  D₀ Y
-      *-law :  {X Y} {f : X  D₀ Y}  out  (f *)  [ out  f , i₂  (f *) ]  out
-      *-unique :  {X Y} (f : X  D₀ Y) (h : D₀ X  D₀ Y)  h  f *
-      *-resp-≈ :  {X Y} {f h : X  D₀ Y}  f  h  f *  h * 
+    field
+      now :  {X}  X  D₀ X
+      later :  {X}  D₀ X  D₀ X
+      isIso :  {X}  IsIso ([ now {X} , later {X} ])
 
-    unitLaw :  {X}  out {X}  now {X}  i₁
-    unitLaw = begin 
-      out  now ≈⟨ refl⟩∘⟨ sym inject₁  
-      out  [ now , later ]  i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) 
-      i₁ 
+    out :  {X}  D₀ X  X + D₀ X
+    out {X} = IsIso.inv (isIso {X})
 
-    toMonad : KleisliTriple C
-    toMonad = record
-      { F₀ = D₀
-      ; unit = now
-      ; extend = _*
-      ; identityʳ = λ {X} {Y} {k}  begin 
-        k *  now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl  
-        (([ now , later ]  out)  k *)  now ≈⟨ pullʳ *-law ⟩∘⟨refl 
-        ([ now , later ]  [ out  k , i₂  (k *) ]  out)  now ≈⟨ pullʳ (pullʳ unitLaw) 
-        [ now , later ]  [ out  k , i₂  (k *) ]  i₁ ≈⟨ refl⟩∘⟨ inject₁ 
-        [ now , later ]  out  k ≈⟨ cancelˡ (IsIso.isoʳ isIso) 
-        k 
-      ; identityˡ = λ {X}  sym (*-unique now idC)
-      ; assoc = λ {X} {Y} {Z} {f} {g}  sym (*-unique ((g *)  f) ((g *)  (f *)))
-      ; sym-assoc = λ {X} {Y} {Z} {f} {g}  *-unique ((g *)  f) ((g *)  (f *))
-      ; extend-≈ = *-resp-≈
-      }
+    field
+      coit :  {X Y}  Y  X + Y  Y  D₀ X
+      coit-law :  {X Y} {f : Y  X + Y}  out  (coit f)  (idC +₁ (coit f))  f
+
+    field
+      _* :  {X Y}  X  D₀ Y  D₀ X  D₀ Y
+      *-law :  {X Y} {f : X  D₀ Y}  out  (f *)  [ out  f , i₂  (f *) ]  out
+      *-unique :  {X Y} (f : X  D₀ Y) (h : D₀ X  D₀ Y)  h  f *
+      *-resp-≈ :  {X Y} {f h : X  D₀ Y}  f  h  f *  h * 
+
+    unitLaw :  {X}  out {X}  now {X}  i₁
+    unitLaw = begin 
+      out  now                  ≈⟨ refl⟩∘⟨ sym inject₁  
+      out  [ now , later ]  i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) 
+      i₁ 
+
+    toMonad : KleisliTriple C
+    toMonad = record
+      { F₀ = D₀
+      ; unit = now
+      ; extend = _*
+      ; identityʳ = λ {X} {Y} {k}  begin 
+        k *  now                                                ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl  
+        (([ now , later ]  out)  k *)  now                    ≈⟨ pullʳ *-law ⟩∘⟨refl 
+        ([ now , later ]  [ out  k , i₂  (k *) ]  out)  now ≈⟨ pullʳ (pullʳ unitLaw) 
+        [ now , later ]  [ out  k , i₂  (k *) ]  i₁          ≈⟨ refl⟩∘⟨ inject₁ 
+        [ now , later ]  out  k                                ≈⟨ cancelˡ (IsIso.isoʳ isIso) 
+        k 
+      ; identityˡ = λ {X}  sym (*-unique now idC)
+      ; assoc = λ {X} {Y} {Z} {f} {g}  sym (*-unique ((g *)  f) ((g *)  (f *)))
+      ; sym-assoc = λ {X} {Y} {Z} {f} {g}  *-unique ((g *)  f) ((g *)  (f *))
+      ; extend-≈ = *-resp-≈
+      }
 

Definition 30: Search-Algebras

-
  record SearchAlgebra (DF : DelayFunctor) : Set (o    e) where
-    open DelayFunctor DF
-    
-    field
-      FA : F-Algebra D
-
-    open F-Algebra FA
-
-    field
-      now-id : α  now  idC    
-      later-same : α  later  α
-
+

TODO

Proposition 31 : the category of uniform-iteration algebras coincides with the category of search-algebras

-

TODOs:

-
    -
  • Define SearchAlgebras (and -SearchAlgebra morphisms)
  • -
  • show StrongEquivalence
  • -
  • Show -‘ElgotAlgebra⇔Search+D
  • -
-
  record SearchAlgebras (DF : DelayFunctor) : Set (o    e) where
-    open DelayFunctor DF
-
+

TODO

diff --git a/public/Monad.Instance.Delay.md b/public/Monad.Instance.Delay.md index e9bbe41..3f287e1 100644 --- a/public/Monad.Instance.Delay.md +++ b/public/Monad.Instance.Delay.md @@ -1,127 +1,222 @@ ## Summary This file introduces the delay monad ***D*** -- [X] *Proposition 1* Characterization of the delay monad ***D*** (here treated as definition) +- [ ] *Proposition 1* Characterization of the delay monad ***D*** - [ ] *Proposition 2* ***D*** is commutative ## Code -
module Monad.Instance.Delay {o  e} (ED : ExtensiveDistributiveCategory o  e) where
-  open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
-  open Cocartesian (Extensive.cocartesian extensive)
-  open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
-  open BinaryProducts products
+
module Monad.Instance.Delay {o  e} (ED : ExtensiveDistributiveCategory o  e) where
+  open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
+  open Cocartesian (Extensive.cocartesian extensive)
+  open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
+  open BinaryProducts products
 
-  open M C
-  open MR C
-  open Equiv
-  open HomReasoning
-  open CoLambek
+  open M C
+  open MR C
+  open Equiv
+  open HomReasoning
+  open CoLambek
 
### *Proposition 1*: Characterization of the delay monad ***D*** -First I postulate the Functor *D*, maybe I should derive it... -**TODO**: -- how to define using final coalgebra(s)? -- DX can be defined as retract of infinite streams, how? -- how to express **Theorem 8** in agda? +
  delayF : Obj  Endofunctor C
+  delayF Y = record
+    { F₀ = Y +_
+    ; F₁ = idC +₁_
+    ; identity = CC.coproduct.unique id-comm-sym id-comm-sym
+    ; homomorphism =  (+₁∘+₁  +₁-cong₂ identity² refl) 
+    ; F-resp-≈ = +₁-cong₂ refl
+    }
 
-
  record DelayFunctor : Set (o    e) where
-    field
-      D : Endofunctor C
+  record DelayM : Set (o    e) where
+    field
+      algebras :  (A : Obj)  Terminal (F-Coalgebras (delayF A))
+    
+    module D A = Functor (delayF A)
 
-    open Functor D public renaming (F₀ to D₀; F₁ to D₁)
+    module _ (X : Obj) where
+      open Terminal (algebras X) using (; !)
+      open F-Coalgebra  renaming (A to DX)
 
-    field
-      now :  {X}  X  D₀ X
-      later :  {X}  D₀ X  D₀ X
-      isIso :  {X}  IsIso [ now {X} , later {X} ]
+      D₀ = DX
 
-    out :  {X}  D₀ X  X + D₀ X
-    out {X} = IsIso.inv (isIso {X})
+      out-≅ : DX  X + DX
+      out-≅ = colambek {F = delayF X} (algebras X)
 
-    field
-      coit :  {X Y}  Y  X + Y  Y  D₀ X
-      coit-law :  {X Y} {f : Y  X + Y}  out  (coit f)  (idC +₁ (coit f))  f
+      -- note: out-≅.from ≡ ⊤.α
+      open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public
+
+      now : X  DX
+      now = out⁻¹  i₁
+
+      later : DX  DX
+      later = out⁻¹  i₂
+
+      -- TODO inline
+      unitlaw : out  now  i₁
+      unitlaw = cancelˡ (_≅_.isoʳ out-≅)
+
+      module _ {Y : Obj} where 
+        coit : Y  X + Y  Y  DX
+        coit f = F-Coalgebra-Morphism.f (! {A = record { A = Y ; α = f }})
+
+        coit-commutes :  (f : Y  X + Y)  out  (coit f)  (idC +₁ coit f)  f
+        coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
+
+    monad : Monad C
+    monad = Kleisli⇒Monad C (record
+      { F₀ = D₀ 
+      ; unit = λ {X}  now X
+      ; extend = extend
+      ; identityʳ = λ {X} {Y} {f}  begin 
+        extend f  now X                                          ≈⟨ (insertˡ (_≅_.isoˡ (out-≅ Y))) ⟩∘⟨refl  
+        (out⁻¹ Y  out Y  extend f)  now X                      ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl 
+        (out⁻¹ Y  [ out Y  f , i₂  extend f ]  out X)  now X ≈⟨ pullʳ (pullʳ (unitlaw X)) 
+        out⁻¹ Y  [ out Y  f , i₂  extend f ]  i₁              ≈⟨ refl⟩∘⟨ inject₁ 
+        out⁻¹ Y  out Y  f                                       ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) 
+        f                                                         
+      ; identityˡ = λ {X}  Terminal.⊤-id (algebras X) (record { f = extend (now X) ; commutes = begin 
+        out X  extend (now X)                                                                                             ≈⟨ pullˡ ((F-Coalgebra-Morphism.commutes (Terminal.! (algebras X) {A = alg (now X)})))  
+        ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  F-Coalgebra.α (alg (now X)))  i₁ ≈⟨ pullʳ inject₁ 
+        (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) 
+         [ [ i₁ , i₂  i₂ ]  (out X  (now X)) , i₂  i₁ ]  out X                                                       ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ (unitlaw X))  inject₁) refl ⟩∘⟨refl 
+        (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  [ i₁ , i₂  i₁ ]  out X           ≈⟨ pullˡ ∘[] 
+        [ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₁ 
+        , (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₂  i₁ ]  out X                ≈⟨ ([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl 
+        [ i₁  idC , (i₂  (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₁ ]  out X            ≈⟨ ([]-cong₂ refl assoc) ⟩∘⟨refl 
+        [ i₁  idC , i₂  (extend (now X)) ]  out X                                                                       ≈˘⟨ []∘+₁ ⟩∘⟨refl 
+        ([ i₁ , i₂ ]  (idC +₁ extend (now X)))  out X                                                                    ≈⟨ (elimˡ +-η) ⟩∘⟨refl 
+        (idC +₁ extend (now X))  out X                                                                                     })
+      ; assoc = {!   !}
+      ; sym-assoc = {!   !}
+      ; extend-≈ = λ {X} {Y} {f} {g} eq  {!   !}
+      
+        -- begin 
+        --   extend f ≈⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend f ; commutes = F-Coalgebra-Morphism.commutes {!   !} })) ⟩ 
+        --   F-Coalgebra-Morphism.f ((Terminal.! (algebras Y) {A = alg' {X} {Y}})) ≈˘⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend g ; commutes = {!   !} })) ⟩
+        --   extend g ∎
+      
+        -- let 
+        --   h : F-Coalgebra-Morphism (alg f) (alg g)
+        --   h = record { f = idC ; commutes = begin 
+        --     F-Coalgebra.α (alg g) ∘ idC ≈⟨ id-comm ⟩ 
+        --     idC ∘ F-Coalgebra.α (alg g) ≈⟨ refl⟩∘⟨ []-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ (sym eq))) refl) ⟩∘⟨refl) refl ⟩ 
+        --     idC ∘ F-Coalgebra.α (alg f) ≈˘⟨ ([]-cong₂ identityʳ identityʳ ○ +-η) ⟩∘⟨refl ⟩
+        --     (idC +₁ idC) ∘ F-Coalgebra.α (alg f) ∎ }
+        --   x : F-Coalgebra-Morphism (alg f) (Terminal.⊤ (algebras Y))
+        --   x = (F-Coalgebras (delayF Y)) [ Terminal.! (algebras Y) ∘ h ]
+        -- in Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = {!   !} } ⟩∘⟨refl
+        
+        -- extend f ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩ 
+        -- out⁻¹ Y ∘ out Y ∘ extend f ≈⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg f})) ⟩
+        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ ((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y) {A = alg f}} {g = Terminal.! (algebras Y) {A = alg f}}) ⟩∘⟨ ([]-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ eq)) refl) ⟩∘⟨refl) refl)) ⟩∘⟨refl) ⟩
+        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ (((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = record { f = F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ; commutes = {!   !} }})) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
+        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈˘⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg g})) ⟩
+        -- out⁻¹ Y ∘ out Y ∘ extend g ≈˘⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩
+        -- extend g ∎
+      })
+      where
+        alg' :  {X Y}  F-Coalgebra (delayF Y)
+        alg' {X} {Y} = record { A = D₀ X ; α = i₂ }
+        module _ {X Y : Obj} (f : X  D₀ Y) where
+          open Terminal (algebras Y) using (!; ⊤-id)
+          alg : F-Coalgebra (delayF Y)
+          alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂  i₂ ]  (out Y  f) , i₂  i₁ ]  out X , (idC +₁ i₂)  out Y ] }  -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm)
+          extend : D₀ X  D₀ Y
+          extend = F-Coalgebra-Morphism.f (! {A = alg})  i₁ {B = D₀ Y}
+          !∘i₂ : F-Coalgebra-Morphism.f (! {A = alg})  i₂  idC
+          !∘i₂ = ⊤-id (F-Coalgebras (delayF Y) [ !  record { f = i₂ ; commutes = inject₂ } ] )
+          extendlaw : out Y  extend  [ out Y  f , i₂  extend ]  out X
+          extendlaw = begin 
+            out Y  extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! {A = alg}))  
+            ((idC +₁ (F-Coalgebra-Morphism.f !))  F-Coalgebra.α alg)  coproduct.i₁                   ≈⟨ pullʳ inject₁ 
+            (idC +₁ (F-Coalgebra-Morphism.f !))  [ [ i₁ , i₂  i₂ ]  (out Y  f) , i₂  i₁ ]  out X ≈⟨ pullˡ ∘[] 
+            [ (idC +₁ (F-Coalgebra-Morphism.f !))  [ i₁ , i₂  i₂ ]  (out Y  f) 
+            , (idC +₁ (F-Coalgebra-Morphism.f !))  i₂  i₁ ]  out X                                  ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl 
+            [ [ (idC +₁ (F-Coalgebra-Morphism.f !))  i₁ 
+              , (idC +₁ (F-Coalgebra-Morphism.f !))  i₂  i₂ ]  (out Y  f) 
+            , (i₂  (F-Coalgebra-Morphism.f !))  i₁ ]  out X                                         ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl 
+            [ [ i₁  idC , (i₂  (F-Coalgebra-Morphism.f !))  i₂ ]  (out Y  f) 
+            , (i₂  (F-Coalgebra-Morphism.f !))  i₁ ]  out X                                         ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂))  +-η)) assoc) ⟩∘⟨refl 
+            [ out Y  f , i₂  extend ]  out X  
 
-Now let's define the monad: +### Old definitions: -
  record DelayMonad : Set (o    e) where
-    field
-      D : DelayFunctor
-    open DelayFunctor D
+
  record DelayMonad : Set (o    e) where
+    field
+      D₀ : Obj  Obj
 
-    field
-      _* :  {X Y}  X  D₀ Y  D₀ X  D₀ Y
-      *-law :  {X Y} {f : X  D₀ Y}  out  (f *)  [ out  f , i₂  (f *) ]  out
-      *-unique :  {X Y} (f : X  D₀ Y) (h : D₀ X  D₀ Y)  h  f *
-      *-resp-≈ :  {X Y} {f h : X  D₀ Y}  f  h  f *  h * 
+    field
+      now :  {X}  X  D₀ X
+      later :  {X}  D₀ X  D₀ X
+      isIso :  {X}  IsIso ([ now {X} , later {X} ])
 
-    unitLaw :  {X}  out {X}  now {X}  i₁
-    unitLaw = begin 
-      out  now ≈⟨ refl⟩∘⟨ sym inject₁  
-      out  [ now , later ]  i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) 
-      i₁ 
+    out :  {X}  D₀ X  X + D₀ X
+    out {X} = IsIso.inv (isIso {X})
 
-    toMonad : KleisliTriple C
-    toMonad = record
-      { F₀ = D₀
-      ; unit = now
-      ; extend = _*
-      ; identityʳ = λ {X} {Y} {k}  begin 
-        k *  now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl  
-        (([ now , later ]  out)  k *)  now ≈⟨ pullʳ *-law ⟩∘⟨refl 
-        ([ now , later ]  [ out  k , i₂  (k *) ]  out)  now ≈⟨ pullʳ (pullʳ unitLaw) 
-        [ now , later ]  [ out  k , i₂  (k *) ]  i₁ ≈⟨ refl⟩∘⟨ inject₁ 
-        [ now , later ]  out  k ≈⟨ cancelˡ (IsIso.isoʳ isIso) 
-        k 
-      ; identityˡ = λ {X}  sym (*-unique now idC)
-      ; assoc = λ {X} {Y} {Z} {f} {g}  sym (*-unique ((g *)  f) ((g *)  (f *)))
-      ; sym-assoc = λ {X} {Y} {Z} {f} {g}  *-unique ((g *)  f) ((g *)  (f *))
-      ; extend-≈ = *-resp-≈
-      }
+    field
+      coit :  {X Y}  Y  X + Y  Y  D₀ X
+      coit-law :  {X Y} {f : Y  X + Y}  out  (coit f)  (idC +₁ (coit f))  f
+
+    field
+      _* :  {X Y}  X  D₀ Y  D₀ X  D₀ Y
+      *-law :  {X Y} {f : X  D₀ Y}  out  (f *)  [ out  f , i₂  (f *) ]  out
+      *-unique :  {X Y} (f : X  D₀ Y) (h : D₀ X  D₀ Y)  h  f *
+      *-resp-≈ :  {X Y} {f h : X  D₀ Y}  f  h  f *  h * 
+
+    unitLaw :  {X}  out {X}  now {X}  i₁
+    unitLaw = begin 
+      out  now                  ≈⟨ refl⟩∘⟨ sym inject₁  
+      out  [ now , later ]  i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) 
+      i₁ 
+
+    toMonad : KleisliTriple C
+    toMonad = record
+      { F₀ = D₀
+      ; unit = now
+      ; extend = _*
+      ; identityʳ = λ {X} {Y} {k}  begin 
+        k *  now                                                ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl  
+        (([ now , later ]  out)  k *)  now                    ≈⟨ pullʳ *-law ⟩∘⟨refl 
+        ([ now , later ]  [ out  k , i₂  (k *) ]  out)  now ≈⟨ pullʳ (pullʳ unitLaw) 
+        [ now , later ]  [ out  k , i₂  (k *) ]  i₁          ≈⟨ refl⟩∘⟨ inject₁ 
+        [ now , later ]  out  k                                ≈⟨ cancelˡ (IsIso.isoʳ isIso) 
+        k 
+      ; identityˡ = λ {X}  sym (*-unique now idC)
+      ; assoc = λ {X} {Y} {Z} {f} {g}  sym (*-unique ((g *)  f) ((g *)  (f *)))
+      ; sym-assoc = λ {X} {Y} {Z} {f} {g}  *-unique ((g *)  f) ((g *)  (f *))
+      ; extend-≈ = *-resp-≈
+      }
 
### Definition 30: Search-Algebras -
  record SearchAlgebra (DF : DelayFunctor) : Set (o    e) where
-    open DelayFunctor DF
-    
-    field
-      FA : F-Algebra D
+TODO
 
-    open F-Algebra FA
-
-    field
-      now-id : α  now  idC    
-      later-same : α  later  α
-
### Proposition 31 : the category of uniform-iteration algebras coincides with the category of search-algebras -TODOs: -- [ ] Define SearchAlgebras (and SearchAlgebra morphisms) -- [ ] show StrongEquivalence -- [ ] Show 'ElgotAlgebra⇔Search+***D***' - - -
  record SearchAlgebras (DF : DelayFunctor) : Set (o    e) where
-    open DelayFunctor DF
-
\ No newline at end of file +TODO diff --git a/public/MonadK.html b/public/MonadK.html index 77e4533..4037deb 100644 --- a/public/MonadK.html +++ b/public/MonadK.html @@ -11,8 +11,11 @@ div.columns{display: flex; gap: min(4vw, 1.5em);} div.column{flex: auto; overflow-x: auto;} div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} - ul.task-list{list-style: none;} + /* The extra [class] is a hack that increases specificity enough to + override a similar rule in reveal.js */ + ul.task-list[class]{list-style: none;} ul.task-list li input[type="checkbox"] { + font-size: inherit; width: 0.8em; margin: 0 0.8em 0.2em -1.6em; vertical-align: middle; @@ -47,24 +50,25 @@

In this file I explore the monad K and its properties:

    -
  • Lemma 16 -Definition of the monad
  • -
  • Lemma 16 +
  • +
  • -
  • Proposition 19 -K is strong
  • -
  • Theorem 22 -K is an equational lifting monad
  • -
  • Proposition 23 The -Kleisli category of K is enriched over pointed -partial orders and strict monotone maps
  • -
  • Proposition 25 -K is copyable and weakly discardable
  • -
  • Theorem 29 +monadicity theorem)
  • +
  • +
  • +
  • +
  • +
  • +strong pre-Elgot monad

Code

module MonadK {o  e} (D : ExtensiveDistributiveCategory o  e) where
diff --git a/public/UniformIterationAlgebra.html b/public/UniformIterationAlgebra.html
index 304387d..76bb2ea 100644
--- a/public/UniformIterationAlgebra.html
+++ b/public/UniformIterationAlgebra.html
@@ -11,8 +11,11 @@
     div.columns{display: flex; gap: min(4vw, 1.5em);}
     div.column{flex: auto; overflow-x: auto;}
     div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-    ul.task-list{list-style: none;}
+    /* The extra [class] is a hack that increases specificity enough to
+       override a similar rule in reveal.js */
+    ul.task-list[class]{list-style: none;}
     ul.task-list li input[type="checkbox"] {
+      font-size: inherit;
       width: 0.8em;
       margin: 0 0.8em 0.2em -1.6em;
       vertical-align: middle;
@@ -35,8 +38,8 @@
 

Summary

This file introduces Uniform-Iteration Algebras

    -
  • Definition -12 Uniform-Iteration Algebras
  • +

Code

module UniformIterationAlgebra {o  e} (D : ExtensiveDistributiveCategory o  e) where
diff --git a/public/UniformIterationAlgebras.html b/public/UniformIterationAlgebras.html
index a78a1e3..68df02e 100644
--- a/public/UniformIterationAlgebras.html
+++ b/public/UniformIterationAlgebras.html
@@ -11,8 +11,11 @@
     div.columns{display: flex; gap: min(4vw, 1.5em);}
     div.column{flex: auto; overflow-x: auto;}
     div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-    ul.task-list{list-style: none;}
+    /* The extra [class] is a hack that increases specificity enough to
+       override a similar rule in reveal.js */
+    ul.task-list[class]{list-style: none;}
     ul.task-list li input[type="checkbox"] {
+      font-size: inherit;
       width: 0.8em;
       margin: 0 0.8em 0.2em -1.6em;
       vertical-align: middle;
@@ -37,8 +40,8 @@
 

Summary

This file introduces the category of Uniform-Iteration Algebras

    -
  • Definition -12 Uniform-Iteration Algebras
  • +

Code

module UniformIterationAlgebras {o  e} (D : ExtensiveDistributiveCategory o  e) where
diff --git a/src/Coalgebra.lagda.md b/src/Coalgebra.lagda.md
new file mode 100644
index 0000000..ead010d
--- /dev/null
+++ b/src/Coalgebra.lagda.md
@@ -0,0 +1,25 @@
+## Coproducts in the category of Coalgebras (needs proper imports to be compiled)
+
+```agda
+module Coalgebra where
+```
+
+  Coalg-cop : (F : Endofunctor C) → (alg₁ : F-Coalgebra F) → (alg₂ : F-Coalgebra F) → Coproduct (F-Coalgebras F) alg₁ alg₂
+  Coalg-cop F alg₁ alg₂ = record
+    { A+B = record { A = A + B ; α = [ (F₁ i₁ ∘ α) , F₁ i₂ ∘ β ] }
+    ; i₁ = record { f = i₁ ; commutes = inject₁ }
+    ; i₂ = record { f = i₂ ; commutes = inject₂ }
+    ; [_,_] = λ {CA} h i → record { f = [ F-Coalgebra-Morphism.f h , F-Coalgebra-Morphism.f i ] ; commutes = begin 
+      F-Coalgebra.α CA ∘ [ F-Coalgebra-Morphism.f h , F-Coalgebra-Morphism.f i ] ≈⟨ ∘[] ⟩ 
+      [ F-Coalgebra.α CA ∘ F-Coalgebra-Morphism.f h , F-Coalgebra.α CA ∘ F-Coalgebra-Morphism.f i ] ≈⟨ ⟺ ([]-cong₂ (⟺ (F-Coalgebra-Morphism.commutes h)) ((⟺ (F-Coalgebra-Morphism.commutes i)))) ⟩
+      [ F₁ (F-Coalgebra-Morphism.f h) ∘ α , F₁ (F-Coalgebra-Morphism.f i) ∘ β ] ≈⟨ ⟺ ([]-cong₂ ((F-resp-≈ inject₁) ⟩∘⟨refl) ((F-resp-≈ inject₂) ⟩∘⟨refl)) ⟩
+      [ F₁ ([ F-Coalgebra-Morphism.f h , F-Coalgebra-Morphism.f i ] ∘ i₁) ∘ α , F₁ ([ F-Coalgebra-Morphism.f h , F-Coalgebra-Morphism.f i ] ∘ i₂) ∘ β ] ≈⟨ ⟺ ([]-cong₂ (pullˡ (⟺ homomorphism)) (pullˡ (⟺ homomorphism))) ⟩
+      [ F₁ ([ F-Coalgebra-Morphism.f h , F-Coalgebra-Morphism.f i ]) ∘ F₁ i₁ ∘ α , F₁ ([ F-Coalgebra-Morphism.f h , F-Coalgebra-Morphism.f i ]) ∘ F₁ i₂ ∘ β ] ≈⟨ ⟺ ∘[] ⟩
+      F₁ ([ F-Coalgebra-Morphism.f h , F-Coalgebra-Morphism.f i ]) ∘ [ F₁ i₁ ∘ α , F₁ i₂ ∘ β ] ∎ }
+    ; inject₁ = inject₁
+    ; inject₂ = inject₂
+    ; unique = λ eq₁ eq₂ → +-unique eq₁ eq₂
+    }
+    where open Functor F
+          open F-Coalgebra alg₁
+          open F-Coalgebra alg₂ renaming (A to B; α to β)
\ No newline at end of file
diff --git a/src/Monad/Instance/Delay.lagda.md b/src/Monad/Instance/Delay.lagda.md
index 49617b6..7cf811c 100644
--- a/src/Monad/Instance/Delay.lagda.md
+++ b/src/Monad/Instance/Delay.lagda.md
@@ -1,5 +1,6 @@