mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Added UniformIterationAlgebras
This commit is contained in:
parent
2c8d4e07ab
commit
8af4faf80c
3 changed files with 91 additions and 0 deletions
|
@ -1,5 +1,7 @@
|
|||
open import Level
|
||||
|
||||
module ElgotAlgebra where
|
||||
|
||||
open import Categories.Functor renaming (id to idF)
|
||||
open import Categories.Functor.Algebra
|
||||
open import Categories.Category
|
||||
|
|
29
UniformIterationAlgebra.agda
Normal file
29
UniformIterationAlgebra.agda
Normal file
|
@ -0,0 +1,29 @@
|
|||
open import Level
|
||||
open import Categories.Category.Core
|
||||
open import Categories.Category.Extensive.Bundle
|
||||
open import Categories.Category.Extensive
|
||||
open import Categories.Category.Cocartesian
|
||||
|
||||
module UniformIterationAlgebra {o ℓ e} (D : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
|
||||
open Cocartesian (Extensive.cocartesian extensive)
|
||||
|
||||
record Uniform-Iteration-Algebra-on (A : Obj) : Set (o ⊔ ℓ ⊔ e) where
|
||||
-- iteration operator
|
||||
field
|
||||
_# : ∀ {X} → (X ⇒ A + X) → (X ⇒ A)
|
||||
|
||||
-- _# properties
|
||||
field
|
||||
#-Fixpoint : ∀ {X} {f : X ⇒ A + X }
|
||||
→ f # ≈ [ idC , f # ] ∘ f
|
||||
#-Uniformity : ∀ {X Y} {f : X ⇒ A + X} {g : Y ⇒ A + Y} {h : X ⇒ Y}
|
||||
→ (idC +₁ h) ∘ f ≈ g ∘ h
|
||||
→ f # ≈ g # ∘ h
|
||||
#-resp-≈ : ∀ {X} {f g : X ⇒ A + X} → f ≈ g → (f #) ≈ (g #)
|
||||
|
||||
record Uniform-Iteration-Algebra : Set (o ⊔ ℓ ⊔ e) where
|
||||
field
|
||||
A : Obj
|
||||
algebra : Uniform-Iteration-Algebra-on A
|
||||
open Uniform-Iteration-Algebra-on algebra public
|
60
UniformIterationAlgebras.agda
Normal file
60
UniformIterationAlgebras.agda
Normal file
|
@ -0,0 +1,60 @@
|
|||
open import Level
|
||||
open import Categories.Category.Core
|
||||
open import Categories.Category.Extensive.Bundle
|
||||
open import Categories.Category.Extensive
|
||||
open import Categories.Category.Cocartesian
|
||||
import Categories.Morphism.Reasoning as MR
|
||||
|
||||
open import UniformIterationAlgebra
|
||||
|
||||
module UniformIterationAlgebras {o ℓ e} (D : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
|
||||
open Cocartesian (Extensive.cocartesian extensive)
|
||||
open HomReasoning
|
||||
open MR C
|
||||
open Equiv
|
||||
|
||||
-- iteration preversing morphism between two elgot-algebras
|
||||
module _ (E₁ E₂ : Uniform-Iteration-Algebra D) where
|
||||
open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁)
|
||||
open Uniform-Iteration-Algebra E₂ renaming (_# to _#₂; A to B)
|
||||
record Uniform-Iteration-Algebra-Morphism : Set (o ⊔ ℓ ⊔ e) where
|
||||
field
|
||||
h : A ⇒ B
|
||||
preserves : ∀ {X} {f : X ⇒ A + X} → h ∘ (f #₁) ≈ ((h +₁ idC) ∘ f)#₂
|
||||
|
||||
-- the category of uniform-iteration algebras for a given category
|
||||
Uniform-Iteration-Algebras : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) e
|
||||
Uniform-Iteration-Algebras = record
|
||||
{ Obj = Uniform-Iteration-Algebra D
|
||||
; _⇒_ = Uniform-Iteration-Algebra-Morphism
|
||||
; _≈_ = λ f g → Uniform-Iteration-Algebra-Morphism.h f ≈ Uniform-Iteration-Algebra-Morphism.h g
|
||||
; id = λ {EB} → let open Uniform-Iteration-Algebra EB in
|
||||
record { h = idC; preserves = λ {X : Obj} {f : X ⇒ A + X} → begin
|
||||
idC ∘ f # ≈⟨ identityˡ ⟩
|
||||
f # ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym)) ⟩
|
||||
((idC +₁ idC) ∘ f) # ∎ }
|
||||
; _∘_ = λ {EA} {EB} {EC} f g → let
|
||||
open Uniform-Iteration-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
|
||||
open Uniform-Iteration-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
|
||||
open Uniform-Iteration-Algebra EA using (A) renaming (_# to _#ᵃ)
|
||||
open Uniform-Iteration-Algebra EB using () renaming (_# to _#ᵇ; A to B)
|
||||
open Uniform-Iteration-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
|
||||
in record { h = hᶠ ∘ hᵍ; preserves = λ {X} {f : X ⇒ A + X} → begin
|
||||
(hᶠ ∘ hᵍ) ∘ (f #ᵃ) ≈⟨ pullʳ preservesᵍ ⟩
|
||||
(hᶠ ∘ (((hᵍ +₁ idC) ∘ f) #ᵇ)) ≈⟨ preservesᶠ ⟩
|
||||
(((hᶠ +₁ idC) ∘ (hᵍ +₁ idC) ∘ f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²)))) ⟩
|
||||
((hᶠ ∘ hᵍ +₁ idC) ∘ f) #ᶜ ∎ }
|
||||
; identityˡ = identityˡ
|
||||
; identityʳ = identityʳ
|
||||
; identity² = identity²
|
||||
; assoc = assoc
|
||||
; sym-assoc = sym-assoc
|
||||
; equiv = record
|
||||
{ refl = refl
|
||||
; sym = sym
|
||||
; trans = trans
|
||||
}
|
||||
; ∘-resp-≈ = ∘-resp-≈
|
||||
}
|
||||
where open Uniform-Iteration-Algebra-Morphism
|
Loading…
Reference in a new issue