mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
sync
This commit is contained in:
parent
cc0cb9cd18
commit
8caee3929a
4 changed files with 155 additions and 106 deletions
|
@ -176,10 +176,10 @@ open Bisimilarity renaming (_≈_ to [_][_≈_]; _≈′_ to [_][_≈′_]; _∼
|
|||
|
||||
|
||||
module DelayMonad where
|
||||
Delayₛ : Setoid c (c ⊔ ℓ) → Setoid c (c ⊔ ℓ)
|
||||
Delayₛ A = record { Carrier = Delay ∣ A ∣ ; _≈_ = [_][_≈_] A ; isEquivalence = record { refl = ≈-refl A ; sym = ≈-sym A ; trans = ≈-trans A } }
|
||||
Delayₛ∼ : Setoid c (c ⊔ ℓ) → Setoid c (c ⊔ ℓ)
|
||||
Delayₛ∼ A = record { Carrier = Delay ∣ A ∣ ; _≈_ = [_][_∼_] A ; isEquivalence = record { refl = ∼-refl A ; sym = ∼-sym A ; trans = ∼-trans A } }
|
||||
Delay≈ : Setoid c (c ⊔ ℓ) → Setoid c (c ⊔ ℓ)
|
||||
Delay≈ A = record { Carrier = Delay ∣ A ∣ ; _≈_ = [_][_≈_] A ; isEquivalence = record { refl = ≈-refl A ; sym = ≈-sym A ; trans = ≈-trans A } }
|
||||
Delay∼ : Setoid c (c ⊔ ℓ) → Setoid c (c ⊔ ℓ)
|
||||
Delay∼ A = record { Carrier = Delay ∣ A ∣ ; _≈_ = [_][_∼_] A ; isEquivalence = record { refl = ∼-refl A ; sym = ∼-sym A ; trans = ∼-trans A } }
|
||||
<_> = _⟨$⟩_
|
||||
open _⟶_ using (cong)
|
||||
|
||||
|
@ -220,10 +220,10 @@ module DelayMonad where
|
|||
lift-cong {A} {B} f {later x} {later y} (later≈ x≈y) = later≈ (lift-cong′ {A} {B} f x≈y)
|
||||
force≈ (lift-cong′ {A} {B} f {x} {y} x≈y) = lift-cong f (force≈ x≈y)
|
||||
|
||||
liftFₛ : ∀ {A B : Setoid c (c ⊔ ℓ)} → A ⟶ B → Delayₛ A ⟶ Delayₛ B
|
||||
liftFₛ : ∀ {A B : Setoid c (c ⊔ ℓ)} → A ⟶ B → Delay≈ A ⟶ Delay≈ B
|
||||
liftFₛ {A} {B} f = record { to = liftF < f > ; cong = lift-cong f }
|
||||
|
||||
liftFₛ∼ : ∀ {A B : Setoid c (c ⊔ ℓ)} → A ⟶ B → Delayₛ∼ A ⟶ Delayₛ∼ B
|
||||
liftFₛ∼ : ∀ {A B : Setoid c (c ⊔ ℓ)} → A ⟶ B → Delay∼ A ⟶ Delay∼ B
|
||||
liftFₛ∼ {A} {B} f = record { to = liftF < f > ; cong = ∼-cong }
|
||||
where
|
||||
∼-cong : ∀ {x y} → [ A ][ x ∼ y ] → [ B ][ liftF < f > x ∼ liftF < f > y ]
|
||||
|
@ -258,7 +258,7 @@ module DelayMonad where
|
|||
later-eq {A} {x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b x↓a (now↓ y≡b)
|
||||
later-eq {A} {x} {later y} x≈ly = ≈-trans A later-self x≈ly
|
||||
|
||||
lift-id : ∀ {A : Setoid c (c ⊔ ℓ)} → (liftFₛ (idₛ A)) ≋ (idₛ (Delayₛ A))
|
||||
lift-id : ∀ {A : Setoid c (c ⊔ ℓ)} → (liftFₛ (idₛ A)) ≋ (idₛ (Delay≈ A))
|
||||
lift-id′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay ∣ A ∣} → [ A ][ (liftF id) x ≈′ id x ]
|
||||
lift-id {A} {now x} = ≈-refl A
|
||||
lift-id {A} {later x} = later≈ lift-id′
|
||||
|
@ -276,7 +276,7 @@ module DelayMonad where
|
|||
lift-resp-≈ {A} {B} {f} {g} f≋g {later x} = later≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g)
|
||||
force≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g {x}) = lift-resp-≈ {A} {B} {f} {g} f≋g
|
||||
|
||||
ηₛ : ∀ (A : Setoid c (c ⊔ ℓ)) → A ⟶ Delayₛ A
|
||||
ηₛ : ∀ (A : Setoid c (c ⊔ ℓ)) → A ⟶ Delay≈ A
|
||||
ηₛ A = record { to = now ; cong = now-cong }
|
||||
|
||||
η-natural : ∀ {A B : Setoid c (c ⊔ ℓ)} (f : A ⟶ B) → (ηₛ B ∘ f) ≋ (liftFₛ f ∘ ηₛ A)
|
||||
|
@ -288,35 +288,35 @@ module DelayMonad where
|
|||
μ {A} (now x) = x
|
||||
μ {A} (later x) = later (μ′ {A} x)
|
||||
|
||||
μ↓-trans : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} {b : ∣ A ∣} → [ Delayₛ A ][ x ↓ y ] → [ A ][ y ↓ b ] → [ A ][ (μ {A} x) ↓ b ]
|
||||
μ↓-trans : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} {b : ∣ A ∣} → [ Delay≈ A ][ x ↓ y ] → [ A ][ y ↓ b ] → [ A ][ (μ {A} x) ↓ b ]
|
||||
μ↓-trans {A} {now x} {y} {b} (now↓ x≡y) y↓b = ≈↓ A (≈-sym A x≡y) y↓b
|
||||
μ↓-trans {A} {later x} {now y} {b} (later↓ x↓y) (now↓ y≡b) = later↓ (μ↓-trans x↓y (now↓ y≡b))
|
||||
μ↓-trans {A} {later x} {later y} {b} (later↓ x↓y) (later↓ y↓b) = later↓ (μ↓-trans (≡↓ (Delayₛ A) (≈-sym A later-self) x↓y) y↓b)
|
||||
μ↓-trans {A} {later x} {later y} {b} (later↓ x↓y) (later↓ y↓b) = later↓ (μ↓-trans (≡↓ (Delay≈ A) (≈-sym A later-self) x↓y) y↓b)
|
||||
|
||||
μ↓ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} → [ Delayₛ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈ y ]
|
||||
μ↓′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} → [ Delayₛ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈′ y ]
|
||||
μ↓ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} → [ Delay≈ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈ y ]
|
||||
μ↓′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay ∣ A ∣)} {y : Delay ∣ A ∣} → [ Delay≈ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈′ y ]
|
||||
force≈ (μ↓′ {A} {x} {y} x↓y) = μ↓ x↓y
|
||||
μ↓ {A} {now x} {y} (now↓ x≡y) = x≡y
|
||||
μ↓ {A} {later x} {now y} (later↓ x↓y) = ≈-trans A (≈-sym A later-self) (↓≈ (≡-refl A) (μ↓-trans x↓y (now↓ (≡-refl A))) (now↓ (≡-refl A)))
|
||||
μ↓ {A} {later x} {later y} (later↓ x↓y) = later≈ (μ↓′ {A} {force x} {force y} (≡↓ (Delayₛ A) (≈-sym A later-self) x↓y))
|
||||
μ↓ {A} {later x} {later y} (later↓ x↓y) = later≈ (μ↓′ {A} {force x} {force y} (≡↓ (Delay≈ A) (≈-sym A later-self) x↓y))
|
||||
|
||||
μ-cong : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delayₛ A ][ x ≈ y ] → [ A ][ μ {A} x ≈ μ {A} y ]
|
||||
μ-cong′ : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delayₛ A ][ x ≈′ y ] → [ A ][ μ {A} x ≈′ μ {A} y ]
|
||||
μ-cong : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delay≈ A ][ x ≈ y ] → [ A ][ μ {A} x ≈ μ {A} y ]
|
||||
μ-cong′ : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delay≈ A ][ x ≈′ y ] → [ A ][ μ {A} x ≈′ μ {A} y ]
|
||||
μ-cong A {now x} {now y} x≈y = now-inj x≈y
|
||||
μ-cong A {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ≈-trans A (≈-sym A (μ↓ (≡↓ (Delayₛ A) (≈-trans A (≈-sym A a≡b) (≈-sym A x≡a)) y↓b))) later-self
|
||||
μ-cong A {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ≈-trans A (≈-sym A later-self) (μ↓ (≡↓ (Delayₛ A) (≈-trans A a≡b (≈-sym A y≡b)) x↓a))
|
||||
μ-cong A {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (μ-cong′ A (≈→≈′ (Delayₛ A) (↓≈ a≡b x↓a y↓b)))
|
||||
μ-cong A {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ≈-trans A (≈-sym A (μ↓ (≡↓ (Delay≈ A) (≈-trans A (≈-sym A a≡b) (≈-sym A x≡a)) y↓b))) later-self
|
||||
μ-cong A {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ≈-trans A (≈-sym A later-self) (μ↓ (≡↓ (Delay≈ A) (≈-trans A a≡b (≈-sym A y≡b)) x↓a))
|
||||
μ-cong A {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (μ-cong′ A (≈→≈′ (Delay≈ A) (↓≈ a≡b x↓a y↓b)))
|
||||
μ-cong A {later x} {later y} (later≈ x≈y) = later≈ (μ-cong′ A x≈y)
|
||||
force≈ (μ-cong′ A {x} {y} x≈y) = μ-cong A (force≈ x≈y)
|
||||
|
||||
μₛ : ∀ (A : Setoid c (c ⊔ ℓ)) → Delayₛ (Delayₛ A) ⟶ Delayₛ A
|
||||
μₛ : ∀ (A : Setoid c (c ⊔ ℓ)) → Delay≈ (Delay≈ A) ⟶ Delay≈ A
|
||||
μₛ A = record { to = μ {A} ; cong = μ-cong A }
|
||||
|
||||
μₛ∼ : ∀ (A : Setoid c (c ⊔ ℓ)) → Delayₛ∼ (Delayₛ∼ A) ⟶ Delayₛ∼ A
|
||||
μₛ∼ : ∀ (A : Setoid c (c ⊔ ℓ)) → Delay∼ (Delay∼ A) ⟶ Delay∼ A
|
||||
μₛ∼ A = record { to = μ {A} ; cong = μ-cong∼ A }
|
||||
where
|
||||
μ-cong∼ : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delayₛ∼ A ][ x ∼ y ] → [ A ][ μ {A} x ∼ μ {A} y ]
|
||||
μ-cong∼′ : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delayₛ∼ A ][ x ∼′ y ] → [ A ][ μ {A} x ∼′ μ {A} y ]
|
||||
μ-cong∼ : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delay∼ A ][ x ∼ y ] → [ A ][ μ {A} x ∼ μ {A} y ]
|
||||
μ-cong∼′ : ∀ (A : Setoid c (c ⊔ ℓ)) {x y : Delay (Delay ∣ A ∣)} → [ Delay∼ A ][ x ∼′ y ] → [ A ][ μ {A} x ∼′ μ {A} y ]
|
||||
force∼ (μ-cong∼′ A {x} {y} x∼y) = μ-cong∼ A (force∼ x∼y)
|
||||
μ-cong∼ A {.(now _)} {.(now _)} (now∼ x∼y) = x∼y
|
||||
μ-cong∼ A {.(later _)} {.(later _)} (later∼ x∼y) = later∼ (μ-cong∼′ A x∼y)
|
||||
|
@ -327,13 +327,13 @@ module DelayMonad where
|
|||
μ-natural {A} {B} f {now x} = ≈-refl B
|
||||
μ-natural {A} {B} f {later x} = later≈ (μ-natural′ f {force x})
|
||||
|
||||
μ-assoc' : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay (Delay ∣ A ∣))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x ∼ (μₛ A ∘ μₛ (Delayₛ A)) ⟨$⟩ x ]
|
||||
μ-assoc'′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay (Delay ∣ A ∣))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x ∼′ (μₛ A ∘ μₛ (Delayₛ A)) ⟨$⟩ x ]
|
||||
μ-assoc' : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay (Delay ∣ A ∣))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x ∼ (μₛ A ∘ μₛ (Delay≈ A)) ⟨$⟩ x ]
|
||||
μ-assoc'′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay (Delay (Delay ∣ A ∣))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x ∼′ (μₛ A ∘ μₛ (Delay≈ A)) ⟨$⟩ x ]
|
||||
force∼ (μ-assoc'′ {A} {x}) = μ-assoc' {A} {x}
|
||||
μ-assoc' {A} {now x} = ∼-refl A
|
||||
μ-assoc' {A} {later x} = later∼ (μ-assoc'′ {A} {force x})
|
||||
|
||||
μ-assoc : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ (liftFₛ (μₛ A))) ≋ (μₛ A ∘ μₛ (Delayₛ A))
|
||||
μ-assoc : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ (liftFₛ (μₛ A))) ≋ (μₛ A ∘ μₛ (Delay≈ A))
|
||||
μ-assoc {A} {x} = ∼⇒≈ (μ-assoc' {A} {x})
|
||||
|
||||
identityˡ↓ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay ∣ A ∣} {y : ∣ A ∣} → [ A ][ x ↓ y ] → [ A ][ ((μₛ A) ⟨$⟩ ((liftFₛ (ηₛ A)) ⟨$⟩ x)) ↓ y ]
|
||||
|
@ -346,20 +346,20 @@ module DelayMonad where
|
|||
identityˡ∼ {A} {later x} = later∼ identityˡ∼′
|
||||
force∼ (identityˡ∼′ {A} {x}) = identityˡ∼
|
||||
|
||||
identityˡ : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ liftFₛ (ηₛ A)) ≋ idₛ (Delayₛ A)
|
||||
identityˡ : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ liftFₛ (ηₛ A)) ≋ idₛ (Delay≈ A)
|
||||
identityˡ′ : ∀ {A : Setoid c (c ⊔ ℓ)} {x : Delay ∣ A ∣} → [ A ][ (μₛ A ∘ liftFₛ (ηₛ A)) ⟨$⟩ x ≈′ x ]
|
||||
force≈ (identityˡ′ {A} {x}) = identityˡ
|
||||
identityˡ {A} {now x} = ≈-refl A
|
||||
identityˡ {A} {later x} = later≈ identityˡ′
|
||||
|
||||
identityʳ : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ ηₛ (Delayₛ A)) ≋ idₛ (Delayₛ A)
|
||||
identityʳ : ∀ {A : Setoid c (c ⊔ ℓ)} → (μₛ A ∘ ηₛ (Delay≈ A)) ≋ idₛ (Delay≈ A)
|
||||
identityʳ {A} {now x} = ≈-refl A
|
||||
identityʳ {A} {later x} = ≈-refl A
|
||||
|
||||
delayMonad : Monad (Setoids c (c ⊔ ℓ))
|
||||
delayMonad = record
|
||||
{ F = record
|
||||
{ F₀ = Delayₛ
|
||||
{ F₀ = Delay≈
|
||||
; F₁ = liftFₛ
|
||||
; identity = lift-id
|
||||
; homomorphism = λ {X} {Y} {Z} {f} {g} → lift-comp {X} {Y} {Z} {f} {g}
|
||||
|
@ -433,7 +433,7 @@ module extra {A : Setoid c (c ⊔ ℓ)} where
|
|||
ι (x , zero) = now x
|
||||
ι (x , suc n) = later (ι′ (x , n))
|
||||
|
||||
ιₛ' : (A ×ₛ (ℕ-setoid {c})) ⟶ Delayₛ∼ A
|
||||
ιₛ' : (A ×ₛ (ℕ-setoid {c})) ⟶ Delay∼ A
|
||||
ιₛ' = record { to = ι ; cong = ι-cong }
|
||||
where
|
||||
ι-cong : ∀ {x y} → [ A ×ₛ (ℕ-setoid {c}) ][ x ≡ y ] → [ A ][ ι x ∼ ι y ]
|
||||
|
|
|
@ -76,8 +76,8 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
helper : [ Y ⊎ₛ X ][ inj₁ a ≡ inj₂ b ]
|
||||
helper rewrite (≣-sym fi₁) | (≣-sym fi₂) = cong f x≡y
|
||||
|
||||
iter-cong∼ : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delayₛ∼ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ∼ (iter {A} {X} < f > y) ]
|
||||
iter-cong∼′ : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delayₛ∼ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ∼′ (iter {A} {X} < f > y) ]
|
||||
iter-cong∼ : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delay∼ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ∼ (iter {A} {X} < f > y) ]
|
||||
iter-cong∼′ : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delay∼ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ∼′ (iter {A} {X} < f > y) ]
|
||||
force∼ (iter-cong∼′ {A} {X} f {x} {y} x≡y) = iter-cong∼ f x≡y
|
||||
iter-cong∼ {A} {X} f {x} {y} x≡y with < f > x in eqx | < f > y in eqy
|
||||
... | inj₁ a | inj₁ b = inj₁-helper f x≡y eqx eqy
|
||||
|
@ -85,8 +85,8 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
... | inj₂ a | inj₁ b = absurd-helper f (≡-sym X x≡y) eqy eqx
|
||||
... | inj₂ a | inj₂ b = later∼ (iter-cong∼′ {A} {X} f (inj₂-helper f x≡y eqx eqy))
|
||||
|
||||
iter-cong : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delayₛ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ≈ (iter {A} {X} < f > y) ]
|
||||
iter-cong′ : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delayₛ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ≈′ (iter {A} {X} < f > y) ]
|
||||
iter-cong : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delay≈ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ≈ (iter {A} {X} < f > y) ]
|
||||
iter-cong′ : ∀ {A X : Setoid ℓ ℓ} (f : X ⟶ (Delay≈ A ⊎ₛ X)) {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ (iter {A} {X} < f > x) ≈′ (iter {A} {X} < f > y) ]
|
||||
force≈ (iter-cong′ {A} {X} f {x} {y} x≡y) = iter-cong f x≡y
|
||||
iter-cong {A} {X} f {x} {y} x≡y with < f > x in eqx | < f > y in eqy
|
||||
... | inj₁ a | inj₁ b = inj₁-helper f x≡y eqx eqy
|
||||
|
@ -94,43 +94,43 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
... | inj₂ a | inj₁ b = absurd-helper f (≡-sym X x≡y) eqy eqx
|
||||
... | inj₂ a | inj₂ b = later≈ (iter-cong′ {A} {X} f (inj₂-helper f x≡y eqx eqy))
|
||||
|
||||
iterₛ∼ : ∀ {A X : Setoid ℓ ℓ} → (X ⟶ (Delayₛ∼ A ⊎ₛ X)) → X ⟶ Delayₛ∼ A
|
||||
iterₛ∼ : ∀ {A X : Setoid ℓ ℓ} → (X ⟶ (Delay∼ A ⊎ₛ X)) → X ⟶ Delay∼ A
|
||||
iterₛ∼ {A} {X} f = record { to = iter {A} {X} < f > ; cong = iter-cong∼ {A} {X} f }
|
||||
|
||||
iterₛ : ∀ {A X : Setoid ℓ ℓ} → (X ⟶ (Delayₛ A ⊎ₛ X)) → X ⟶ Delayₛ A
|
||||
iterₛ : ∀ {A X : Setoid ℓ ℓ} → (X ⟶ (Delay≈ A ⊎ₛ X)) → X ⟶ Delay≈ A
|
||||
iterₛ {A} {X} f = record { to = iter {A} {X} < f > ; cong = iter-cong {A} {X} f }
|
||||
|
||||
iter-fixpoint : ∀ {A X : Setoid ℓ ℓ} {f : X ⟶ (Delayₛ A ⊎ₛ X)} {x : ∣ X ∣} → [ A ][ iter {A} {X} < f > x ≈ [ Function.id , iter {A} {X} < f > ] (f ⟨$⟩ x) ]
|
||||
iter-fixpoint : ∀ {A X : Setoid ℓ ℓ} {f : X ⟶ (Delay≈ A ⊎ₛ X)} {x : ∣ X ∣} → [ A ][ iter {A} {X} < f > x ≈ [ Function.id , iter {A} {X} < f > ] (f ⟨$⟩ x) ]
|
||||
iter-fixpoint {A} {X} {f} {x} with < f > x in eqx
|
||||
... | inj₁ a = ≈-refl A
|
||||
... | inj₂ a = ≈-trans A (≈-sym A later-self) (≈-refl A)
|
||||
|
||||
iter-resp-≈ : ∀ {A X : Setoid ℓ ℓ} (f g : X ⟶ (Delayₛ A ⊎ₛ X)) → f ≋ g → ∀ {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ iter {A} {X} < f > x ≈ iter {A} {X} < g > y ]
|
||||
iter-resp-≈′ : ∀ {A X : Setoid ℓ ℓ} (f g : X ⟶ (Delayₛ A ⊎ₛ X)) → f ≋ g → ∀ {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ iter {A} {X} < f > x ≈′ iter {A} {X} < g > y ]
|
||||
iter-resp-≈ : ∀ {A X : Setoid ℓ ℓ} (f g : X ⟶ (Delay≈ A ⊎ₛ X)) → f ≋ g → ∀ {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ iter {A} {X} < f > x ≈ iter {A} {X} < g > y ]
|
||||
iter-resp-≈′ : ∀ {A X : Setoid ℓ ℓ} (f g : X ⟶ (Delay≈ A ⊎ₛ X)) → f ≋ g → ∀ {x y : ∣ X ∣} → [ X ][ x ≡ y ] → [ A ][ iter {A} {X} < f > x ≈′ iter {A} {X} < g > y ]
|
||||
force≈ (iter-resp-≈′ {A} {X} f g f≋g {x} {y} x≡y) = iter-resp-≈ f g f≋g {x} {y} x≡y
|
||||
iter-resp-≈ {A} {X} f g f≋g {x} {y} x≡y with < f > x in eqa | < g > y in eqb
|
||||
... | inj₁ a | inj₁ b = drop-inj₁ helper
|
||||
where
|
||||
helper : [ Delayₛ A ⊎ₛ X ][ inj₁ a ≡ inj₁ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delayₛ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
... | inj₁ a | inj₂ b = conflict (Delayₛ A) X helper
|
||||
helper : [ Delay≈ A ⊎ₛ X ][ inj₁ a ≡ inj₁ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delay≈ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
... | inj₁ a | inj₂ b = conflict (Delay≈ A) X helper
|
||||
where
|
||||
helper : [ Delayₛ A ⊎ₛ X ][ inj₁ a ≡ inj₂ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delayₛ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
... | inj₂ a | inj₁ b = conflict (Delayₛ A) X (≡-sym (Delayₛ A ⊎ₛ X) helper)
|
||||
helper : [ Delay≈ A ⊎ₛ X ][ inj₁ a ≡ inj₂ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delay≈ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
... | inj₂ a | inj₁ b = conflict (Delay≈ A) X (≡-sym (Delay≈ A ⊎ₛ X) helper)
|
||||
where
|
||||
helper : [ Delayₛ A ⊎ₛ X ][ inj₂ a ≡ inj₁ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delayₛ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
helper : [ Delay≈ A ⊎ₛ X ][ inj₂ a ≡ inj₁ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delay≈ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
... | inj₂ a | inj₂ b = later≈ (iter-resp-≈′ f g f≋g (drop-inj₂ helper))
|
||||
where
|
||||
helper : [ Delayₛ A ⊎ₛ X ][ inj₂ a ≡ inj₂ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delayₛ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
helper : [ Delay≈ A ⊎ₛ X ][ inj₂ a ≡ inj₂ b ]
|
||||
helper rewrite (≣-sym eqb) | (≣-sym eqa) = ≡-trans (Delay≈ A ⊎ₛ X) (cong f x≡y) f≋g
|
||||
|
||||
iter-uni : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delayₛ A ⊎ₛ X)} {g : Y ⟶ (Delayₛ A ⊎ₛ Y)} {h : X ⟶ Y}
|
||||
→ ([ inj₁ₛ ∘ (idₛ (Delayₛ A)) , inj₂ₛ ∘ h ]ₛ ∘ f) ≋ (g ∘ h)
|
||||
iter-uni : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delay≈ A ⊎ₛ X)} {g : Y ⟶ (Delay≈ A ⊎ₛ Y)} {h : X ⟶ Y}
|
||||
→ ([ inj₁ₛ , inj₂ₛ ∘ h ]ₛ ∘ f) ≋ (g ∘ h)
|
||||
→ ∀ {x : ∣ X ∣} {y : ∣ Y ∣} → [ Y ][ y ≡ h ⟨$⟩ x ] → [ A ][ iter {A} {X} < f > x ≈ (iter {A} {Y} < g >) y ]
|
||||
iter-uni′ : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delayₛ A ⊎ₛ X)} {g : Y ⟶ (Delayₛ A ⊎ₛ Y)} {h : X ⟶ Y}
|
||||
→ ([ inj₁ₛ ∘ (idₛ (Delayₛ A)) , inj₂ₛ ∘ h ]ₛ ∘ f) ≋ (g ∘ h)
|
||||
iter-uni′ : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delay≈ A ⊎ₛ X)} {g : Y ⟶ (Delay≈ A ⊎ₛ Y)} {h : X ⟶ Y}
|
||||
→ ([ inj₁ₛ , inj₂ₛ ∘ h ]ₛ ∘ f) ≋ (g ∘ h)
|
||||
→ ∀ {x : ∣ X ∣} {y : ∣ Y ∣} → [ Y ][ y ≡ h ⟨$⟩ x ] → [ A ][ iter {A} {X} < f > x ≈′ (iter {A} {Y} < g >) y ]
|
||||
force≈ (iter-uni′ {A} {X} {Y} {f} {g} {h} eq {x} {y} y≡h$x) = iter-uni {A} {X} {Y} {f} {g} {h} eq {x} {y} y≡h$x
|
||||
iter-uni {A} {X} {Y} {f} {g} {h} eq {x} {y} x≡y with f ⟨$⟩ x in eqx | g ⟨$⟩ (h ⟨$⟩ x) in eqy | g ⟨$⟩ y in eqz | eq {x}
|
||||
|
@ -140,10 +140,10 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
... | inj₂ a | inj₂ b | inj₂ c | inj₂ req = later≈ (iter-uni′ {f = f} {g = g}{h = h} eq c≡h$a)
|
||||
where
|
||||
c≡h$a : [ Y ][ c ≡ h ⟨$⟩ a ]
|
||||
c≡h$a = ≡-trans Y (drop-inj₂ (≡-trans (Delayₛ A ⊎ₛ Y) (≡-trans (Delayₛ A ⊎ₛ Y) (≡-sym (Delayₛ A ⊎ₛ Y) (≡→≡ {Delayₛ A ⊎ₛ Y} eqz)) (cong g x≡y)) (≡→≡ {Delayₛ A ⊎ₛ Y} eqy))) (≡-sym Y req)
|
||||
c≡h$a = ≡-trans Y (drop-inj₂ (≡-trans (Delay≈ A ⊎ₛ Y) (≡-trans (Delay≈ A ⊎ₛ Y) (≡-sym (Delay≈ A ⊎ₛ Y) (≡→≡ {Delay≈ A ⊎ₛ Y} eqz)) (cong g x≡y)) (≡→≡ {Delay≈ A ⊎ₛ Y} eqy))) (≡-sym Y req)
|
||||
|
||||
iter-folding : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delayₛ A ⊎ₛ X)} {h : Y ⟶ (X ⊎ₛ Y)} {x : ∣ X ⊎ₛ Y ∣} → [ A ][ iter {A} {X ⊎ₛ Y} [ inj₁ ∘f iter {A} {X} < f > , inj₂ ∘f < h > ] x ≈ iter {A} {X ⊎ₛ Y} [ [ inj₁ , inj₂ ∘′ inj₁ ] ∘f < f > , (inj₂ ∘f < h >) ] x ]
|
||||
iter-folding′ : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delayₛ A ⊎ₛ X)} {h : Y ⟶ (X ⊎ₛ Y)} {x : ∣ X ⊎ₛ Y ∣} → [ A ][ iter {A} {X ⊎ₛ Y} [ inj₁ ∘f iter {A} {X} < f > , inj₂ ∘f < h > ] x ≈′ iter {A} {X ⊎ₛ Y} [ [ inj₁ , inj₂ ∘′ inj₁ ] ∘f < f > , (inj₂ ∘f < h >) ] x ]
|
||||
iter-folding : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delay≈ A ⊎ₛ X)} {h : Y ⟶ (X ⊎ₛ Y)} {x : ∣ X ⊎ₛ Y ∣} → [ A ][ iter {A} {X ⊎ₛ Y} [ inj₁ ∘f iter {A} {X} < f > , inj₂ ∘f < h > ] x ≈ iter {A} {X ⊎ₛ Y} [ [ inj₁ , inj₂ ∘′ inj₁ ] ∘f < f > , (inj₂ ∘f < h >) ] x ]
|
||||
iter-folding′ : ∀ {A X Y : Setoid ℓ ℓ} {f : X ⟶ (Delay≈ A ⊎ₛ X)} {h : Y ⟶ (X ⊎ₛ Y)} {x : ∣ X ⊎ₛ Y ∣} → [ A ][ iter {A} {X ⊎ₛ Y} [ inj₁ ∘f iter {A} {X} < f > , inj₂ ∘f < h > ] x ≈′ iter {A} {X ⊎ₛ Y} [ [ inj₁ , inj₂ ∘′ inj₁ ] ∘f < f > , (inj₂ ∘f < h >) ] x ]
|
||||
force≈ (iter-folding′ {A} {X} {Y} {f} {h} {x}) = iter-folding {A} {X} {Y} {f} {h} {x}
|
||||
iter-folding {A} {X} {Y} {f} {h} {inj₁ x} with f ⟨$⟩ x in eqa
|
||||
... | inj₁ a = ≈-refl A
|
||||
|
@ -159,7 +159,7 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
... | inj₁ a = later≈ (iter-folding′ {A} {X} {Y} {f} {h} {inj₁ a})
|
||||
... | inj₂ a = later≈ (iter-folding′ {A} {X} {Y} {f} {h} {inj₂ a})
|
||||
|
||||
delay-algebras-on : ∀ {A : Setoid ℓ ℓ} → Elgot-Algebra-on (Delayₛ A)
|
||||
delay-algebras-on : ∀ {A : Setoid ℓ ℓ} → Elgot-Algebra-on (Delay≈ A)
|
||||
delay-algebras-on {A} = record
|
||||
{ _# = iterₛ {A}
|
||||
; #-Fixpoint = λ {X} {f} → iter-fixpoint {A} {X} {f}
|
||||
|
@ -169,7 +169,7 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
}
|
||||
|
||||
delay-algebras : ∀ (A : Setoid ℓ ℓ) → Elgot-Algebra
|
||||
delay-algebras A = record { A = Delayₛ A ; algebra = delay-algebras-on {A}}
|
||||
delay-algebras A = record { A = Delay≈ A ; algebra = delay-algebras-on {A}}
|
||||
|
||||
open Elgot-Algebra using (#-Fixpoint; #-Uniformity; #-Compositionality; #-resp-≈; #-Diamond) renaming (A to ⟦_⟧)
|
||||
|
||||
|
@ -183,12 +183,12 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
helper₁ (now x) = inj₁ (< f > x)
|
||||
helper₁ (later x) = inj₂ (force x)
|
||||
|
||||
helper₁-cong : {x y : Delay ∣ A ∣} → (x∼y : [ A ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ A ][ helper₁ x ≡ helper₁ y ]
|
||||
helper₁-cong : {x y : Delay ∣ A ∣} → (x∼y : [ A ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ Delay∼ A ][ helper₁ x ≡ helper₁ y ]
|
||||
helper₁-cong (now∼ x≡y) = inj₁ (cong f x≡y)
|
||||
helper₁-cong (later∼ x≡y) = inj₂ (force∼ x≡y)
|
||||
|
||||
-- -- setoid-morphism that preserves strong-bisimilarity
|
||||
helper : (Delayₛ∼ A) ⟶ (⟦ B ⟧ ⊎ₛ Delayₛ∼ A)
|
||||
helper : (Delay∼ A) ⟶ (⟦ B ⟧ ⊎ₛ Delay∼ A)
|
||||
helper = record { to = helper₁ ; cong = helper₁-cong}
|
||||
|
||||
helper#∼-cong : {x y : Delay ∣ A ∣} → (x∼y : [ A ][ x ∼ y ]) → [ ⟦ B ⟧ ][ helper # ⟨$⟩ x ≡ helper # ⟨$⟩ y ]
|
||||
|
@ -223,31 +223,31 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
helper₁' (now (x , suc n)) = inj₂ (< liftFₛ∼ outer > (ι {A} (x , n)))
|
||||
helper₁' (later y) = inj₂ (force y)
|
||||
|
||||
helper₁-cong' : {x y : Delay (∣ A ∣ × ℕ {ℓ})} → (x∼y : [ A ×ₛ ℕ-setoid ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid) ][ helper₁' x ≡ helper₁' y ]
|
||||
helper₁-cong' : {x y : Delay (∣ A ∣ × ℕ {ℓ})} → (x∼y : [ A ×ₛ ℕ-setoid ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid) ][ helper₁' x ≡ helper₁' y ]
|
||||
helper₁-cong' {now (x , zero)} (now∼ (x≡y , ≣-refl)) = inj₁ (cong f x≡y)
|
||||
helper₁-cong' {now (x , suc n)} {now (y , suc _)} (now∼ (x≡y , ≣-refl)) = inj₂ (cong (liftFₛ∼ outer) (cong ιₛ' (x≡y , ≣-refl)))
|
||||
helper₁-cong' (later∼ x∼y) = inj₂ (force∼ x∼y)
|
||||
|
||||
helper' : (Delayₛ∼ (A ×ₛ ℕ-setoid)) ⟶ (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
helper' : (Delay∼ (A ×ₛ ℕ-setoid)) ⟶ (⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid))
|
||||
helper' = record { to = helper₁' ; cong = helper₁-cong'}
|
||||
|
||||
helper₁'' : Delay (∣ A ∣ × ℕ {ℓ}) → ∣ ⟦ B ⟧ ∣ ⊎ Delay (∣ A ∣ × ℕ {ℓ})
|
||||
helper₁'' (now (x , _)) = inj₁ (< f > x)
|
||||
helper₁'' (later y) = inj₂ (force y)
|
||||
|
||||
helper₁-cong'' : {x y : Delay (∣ A ∣ × ℕ {ℓ})} → (x∼y : [ A ×ₛ ℕ-setoid ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid) ][ helper₁'' x ≡ helper₁'' y ]
|
||||
helper₁-cong'' : {x y : Delay (∣ A ∣ × ℕ {ℓ})} → (x∼y : [ A ×ₛ ℕ-setoid ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid) ][ helper₁'' x ≡ helper₁'' y ]
|
||||
helper₁-cong'' {now (x , _)} (now∼ (x≡y , ≣-refl)) = inj₁ (cong f x≡y)
|
||||
helper₁-cong'' (later∼ x∼y) = inj₂ (force∼ x∼y)
|
||||
|
||||
helper'' : (Delayₛ∼ (A ×ₛ ℕ-setoid)) ⟶ (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
helper'' : (Delay∼ (A ×ₛ ℕ-setoid)) ⟶ (⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid))
|
||||
helper'' = record { to = helper₁'' ; cong = helper₁-cong''}
|
||||
|
||||
-- Needs #-Diamond
|
||||
eq₀ : ∀ {z} → [ ⟦ B ⟧ ][ helper' # ⟨$⟩ z ≡ helper'' # ⟨$⟩ z ]
|
||||
eq₀ {z} = ≡-trans ⟦ B ⟧
|
||||
(#-resp-≈ B {Delayₛ∼ (A ×ₛ ℕ-setoid)} {helper'} step₁)
|
||||
(#-resp-≈ B {Delay∼ (A ×ₛ ℕ-setoid)} {helper'} step₁)
|
||||
(≡-trans ⟦ B ⟧
|
||||
(#-Diamond B {Delayₛ∼ (A ×ₛ ℕ-setoid)} helper''')
|
||||
(#-Diamond B {Delay∼ (A ×ₛ ℕ-setoid)} helper''')
|
||||
(#-resp-≈ B (λ {x} → (step₂ {x}))))
|
||||
where
|
||||
helper₁''' : Delay (∣ A ∣ × ℕ {ℓ}) → ∣ ⟦ B ⟧ ∣ ⊎ (Delay (∣ A ∣ × ℕ {ℓ}) ⊎ Delay (∣ A ∣ × ℕ {ℓ}))
|
||||
|
@ -255,45 +255,45 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
helper₁''' (now (x , suc n)) = inj₂ (inj₁ (< liftFₛ∼ outer > (ι {A} (x , n))))
|
||||
helper₁''' (later y) = inj₂ (inj₂ (force y))
|
||||
|
||||
helper₁-cong''' : {x y : Delay (∣ A ∣ × ℕ {ℓ})} → (x∼y : [ A ×ₛ ℕ-setoid ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ (Delayₛ∼ (A ×ₛ ℕ-setoid) ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid)) ][ helper₁''' x ≡ helper₁''' y ]
|
||||
helper₁-cong''' : {x y : Delay (∣ A ∣ × ℕ {ℓ})} → (x∼y : [ A ×ₛ ℕ-setoid ][ x ∼ y ]) → [ ⟦ B ⟧ ⊎ₛ (Delay∼ (A ×ₛ ℕ-setoid) ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid)) ][ helper₁''' x ≡ helper₁''' y ]
|
||||
helper₁-cong''' {now (x , zero)} (now∼ (x≡y , ≣-refl)) = inj₁ (cong f x≡y)
|
||||
helper₁-cong''' {now (x , suc n)} {now (y , suc _)} (now∼ (x≡y , ≣-refl)) = inj₂ (inj₁ (cong (liftFₛ∼ outer) (cong ιₛ' (x≡y , ≣-refl))))
|
||||
helper₁-cong''' (later∼ x∼y) = inj₂ (inj₂ (force∼ x∼y))
|
||||
|
||||
helper''' : (Delayₛ∼ (A ×ₛ ℕ-setoid)) ⟶ (⟦ B ⟧ ⊎ₛ (Delayₛ∼ (A ×ₛ ℕ-setoid) ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid)))
|
||||
helper''' : (Delay∼ (A ×ₛ ℕ-setoid)) ⟶ (⟦ B ⟧ ⊎ₛ (Delay∼ (A ×ₛ ℕ-setoid) ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid)))
|
||||
helper''' = record { to = helper₁''' ; cong = helper₁-cong''' }
|
||||
|
||||
step₁ : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid) ][ helper' ⟨$⟩ x ≡ ([ inj₁ , inj₂ ∘′ [ id , id ] ] ∘′ helper₁''') x ]
|
||||
step₁ {now (a , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
step₁ {now (a , suc n)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
step₁ {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
step₁ : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid) ][ helper' ⟨$⟩ x ≡ ([ inj₁ , inj₂ ∘′ [ id , id ] ] ∘′ helper₁''') x ]
|
||||
step₁ {now (a , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid))
|
||||
step₁ {now (a , suc n)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid))
|
||||
step₁ {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid))
|
||||
|
||||
step₂ : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid) ][ ([ inj₁ , [ inj₁ ∘′ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delayₛ∼ (A ×ₛ ℕ-setoid)) , idₛ (Delayₛ∼ (A ×ₛ ℕ-setoid)) ]ₛ ]ₛ ∘ helper''') # > , inj₂ ] ] ∘′ helper₁''') x ≡ helper'' ⟨$⟩ x ]
|
||||
step₂ {now (a , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
step₂ : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid) ][ ([ inj₁ , [ inj₁ ∘′ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delay∼ (A ×ₛ ℕ-setoid)) , idₛ (Delay∼ (A ×ₛ ℕ-setoid)) ]ₛ ]ₛ ∘ helper''') # > , inj₂ ] ] ∘′ helper₁''') x ≡ helper'' ⟨$⟩ x ]
|
||||
step₂ {now (a , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid))
|
||||
step₂ {now (x , suc n)} = inj₁ (by-induction n)
|
||||
where
|
||||
by-induction : ∀ n → [ ⟦ B ⟧ ][ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delayₛ∼ (A ×ₛ ℕ-setoid)) , idₛ (Delayₛ∼ (A ×ₛ ℕ-setoid)) ]ₛ ]ₛ ∘ helper''') # > (< liftFₛ∼ outer > (ι (x , n))) ≡ f ⟨$⟩ x ]
|
||||
by-induction : ∀ n → [ ⟦ B ⟧ ][ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delay∼ (A ×ₛ ℕ-setoid)) , idₛ (Delay∼ (A ×ₛ ℕ-setoid)) ]ₛ ]ₛ ∘ helper''') # > (< liftFₛ∼ outer > (ι (x , n))) ≡ f ⟨$⟩ x ]
|
||||
by-induction zero = #-Fixpoint B
|
||||
by-induction (suc n) = ≡-trans ⟦ B ⟧ (#-Fixpoint B) (by-induction n)
|
||||
step₂ {later y} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ (A ×ₛ ℕ-setoid))
|
||||
step₂ {later y} = ≡-refl (⟦ B ⟧ ⊎ₛ Delay∼ (A ×ₛ ℕ-setoid))
|
||||
|
||||
eq₁ : ∀ {z} → [ ⟦ B ⟧ ][ helper'' # ⟨$⟩ z ≡ helper # ⟨$⟩ liftF proj₁ z ]
|
||||
eq₁ {z} = #-Uniformity B {f = helper''} {g = helper} {h = liftFₛ∼ proj₁ₛ} by-uni
|
||||
where
|
||||
by-uni : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ A ][ [ inj₁ , inj₂ ∘′ (liftF proj₁) ] (helper₁'' x) ≡ (< helper > ∘′ liftF proj₁) x ]
|
||||
by-uni {now (a , b)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ A)
|
||||
by-uni {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ∼ A)
|
||||
by-uni : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delay∼ A ][ [ inj₁ , inj₂ ∘′ (liftF proj₁) ] (helper₁'' x) ≡ (< helper > ∘′ liftF proj₁) x ]
|
||||
by-uni {now (a , b)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delay∼ A)
|
||||
by-uni {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delay∼ A)
|
||||
|
||||
eq : ∀ {x y} → [ A ×ₛ ℕ-setoid ][ x ∼ y ] → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' x) ≡ (helper₁ ∘′ μ ∘′ (liftF ι)) y ]
|
||||
eq : ∀ {x y} → [ A ×ₛ ℕ-setoid ][ x ∼ y ] → [ ⟦ B ⟧ ⊎ₛ Delay∼ A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' x) ≡ (helper₁ ∘′ μ ∘′ (liftF ι)) y ]
|
||||
eq {now (x , n)} {now (y , .n)} (now∼ (x∼y , ≣-refl)) = eq' {n}
|
||||
where
|
||||
eq' : ∀ {n} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ A ][ [ inj₁ , inj₂ ∘′ μ ∘′ liftF ι ] (helper₁' (now (x , n))) ≡ (helper₁ ∘′ μ {A} ∘′ liftF ι) (now (y , n)) ]
|
||||
eq' : ∀ {n} → [ ⟦ B ⟧ ⊎ₛ Delay∼ A ][ [ inj₁ , inj₂ ∘′ μ ∘′ liftF ι ] (helper₁' (now (x , n))) ≡ (helper₁ ∘′ μ {A} ∘′ liftF ι) (now (y , n)) ]
|
||||
eq' {zero} = inj₁ (cong f x∼y)
|
||||
eq' {suc n} = inj₂ (∼-trans A (cong (μₛ∼ A) (∼-sym (Delayₛ∼ A) (lift-comp∼ {f = outer} {g = ιₛ'} {ι (x , n)} (∼-refl A)))) (∼-trans A identityˡ∼ (cong ιₛ' (x∼y , ≣-refl))))
|
||||
eq' {suc n} = inj₂ (∼-trans A (cong (μₛ∼ A) (∼-sym (Delay∼ A) (lift-comp∼ {f = outer} {g = ιₛ'} {ι (x , n)} (∼-refl A)))) (∼-trans A identityˡ∼ (cong ιₛ' (x∼y , ≣-refl))))
|
||||
eq (later∼ x∼y) = inj₂ (cong (μₛ∼ A) (cong (liftFₛ∼ ιₛ') (force∼ x∼y)))
|
||||
|
||||
eq₂ : [ ⟦ B ⟧ ][ helper' # ⟨$⟩ z ≡ helper # ⟨$⟩ μ {A} (liftF (ι {A}) z)]
|
||||
eq₂ = Elgot-Algebra.#-Uniformity B {Delayₛ∼ (A ×ₛ ℕ-setoid {ℓ})} {Delayₛ∼ A} {helper'} {helper} {μₛ∼ A ∘ liftFₛ∼ ιₛ'} (λ {x} → eq {x} {x} (∼-refl (A ×ₛ ℕ-setoid)))
|
||||
eq₂ = Elgot-Algebra.#-Uniformity B {Delay∼ (A ×ₛ ℕ-setoid {ℓ})} {Delay∼ A} {helper'} {helper} {μₛ∼ A ∘ liftFₛ∼ ιₛ'} (λ {x} → eq {x} {x} (∼-refl (A ×ₛ ℕ-setoid)))
|
||||
|
||||
delay-lift' = record { to = < helper # > ; cong = helper#≈-cong }
|
||||
|
||||
|
@ -307,34 +307,34 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
_⟶_.to ‖‖-quote x = x
|
||||
cong (‖‖-quote {X}) ≣-refl = ≡-refl X
|
||||
|
||||
disc-dom : ∀ {X : Setoid ℓ ℓ} → X ⟶ (Delayₛ A ⊎ₛ X) → ‖ X ‖ ⟶ (Delayₛ∼ A ⊎ₛ ‖ X ‖)
|
||||
disc-dom : ∀ {X : Setoid ℓ ℓ} → X ⟶ (Delay≈ A ⊎ₛ X) → ‖ X ‖ ⟶ (Delay∼ A ⊎ₛ ‖ X ‖)
|
||||
_⟶_.to (disc-dom f) x = f ⟨$⟩ x
|
||||
cong (disc-dom {X} f) {x} {y} x≡y rewrite x≡y = ≡-refl (Delayₛ∼ A ⊎ₛ ‖ X ‖)
|
||||
cong (disc-dom {X} f) {x} {y} x≡y rewrite x≡y = ≡-refl (Delay∼ A ⊎ₛ ‖ X ‖)
|
||||
|
||||
iter-g-var : ∀ {X : Setoid ℓ ℓ} → (g : X ⟶ (Delayₛ A ⊎ₛ X)) → ∀ {x} → [ A ][ (iter {A} {X} < g >) x ∼ (iterₛ∼ {A} {‖ X ‖} (disc-dom g)) ⟨$⟩ x ]
|
||||
iter-g-var′ : ∀ {X : Setoid ℓ ℓ} → (g : X ⟶ (Delayₛ A ⊎ₛ X)) → ∀ {x} → [ A ][ (iter {A} {X} < g >) x ∼′ (iterₛ∼ {A} {‖ X ‖} (disc-dom g)) ⟨$⟩ x ]
|
||||
iter-g-var : ∀ {X : Setoid ℓ ℓ} → (g : X ⟶ (Delay≈ A ⊎ₛ X)) → ∀ {x} → [ A ][ (iter {A} {X} < g >) x ∼ (iterₛ∼ {A} {‖ X ‖} (disc-dom g)) ⟨$⟩ x ]
|
||||
iter-g-var′ : ∀ {X : Setoid ℓ ℓ} → (g : X ⟶ (Delay≈ A ⊎ₛ X)) → ∀ {x} → [ A ][ (iter {A} {X} < g >) x ∼′ (iterₛ∼ {A} {‖ X ‖} (disc-dom g)) ⟨$⟩ x ]
|
||||
force∼ (iter-g-var′ {X} g {x}) = iter-g-var {X} g {x}
|
||||
iter-g-var {X} g {x} with g ⟨$⟩ x
|
||||
... | inj₁ a = ∼-refl A
|
||||
... | inj₂ a = later∼ (iter-g-var′ {X} g {a})
|
||||
|
||||
preserves' : ∀ {X : Setoid ℓ ℓ} {g : X ⟶ (Delayₛ A ⊎ₛ X)} → ∀ {x} → [ ⟦ B ⟧ ][ (delay-lift' ∘ (iterₛ {A} {X} g)) ⟨$⟩ x ≡ ([ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g) # ⟨$⟩ x ]
|
||||
preserves' : ∀ {X : Setoid ℓ ℓ} {g : X ⟶ (Delay≈ A ⊎ₛ X)} → ∀ {x} → [ ⟦ B ⟧ ][ (delay-lift' ∘ (iterₛ {A} {X} g)) ⟨$⟩ x ≡ ([ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g) # ⟨$⟩ x ]
|
||||
preserves' {X} {g} {x} = ≡-trans ⟦ B ⟧ step₁ step₂
|
||||
where
|
||||
step₁ : [ ⟦ B ⟧ ][ (delay-lift' ∘ (iterₛ {A} {X} g)) ⟨$⟩ x ≡ ([ inj₁ₛ ∘ (helper #) , inj₂ₛ ]ₛ ∘ (disc-dom g)) # ⟨$⟩ x ]
|
||||
step₁ = ≡-trans ⟦ B ⟧ (≡-trans ⟦ B ⟧ (helper#∼-cong (iter-g-var g)) (sub-step₁ (disc-dom g) {inj₂ x})) (≡-sym ⟦ B ⟧ (#-Compositionality B {f = helper} {h = disc-dom g}))
|
||||
where
|
||||
sub-step₁ : (g : ‖ X ‖ ⟶ ((Delayₛ∼ A) ⊎ₛ ‖ X ‖)) → ∀ {x} → [ ⟦ B ⟧ ][ ((helper #) ∘ [ idₛ (Delayₛ∼ A) , iterₛ∼ g ]ₛ) ⟨$⟩ x
|
||||
sub-step₁ : (g : ‖ X ‖ ⟶ ((Delay∼ A) ⊎ₛ ‖ X ‖)) → ∀ {x} → [ ⟦ B ⟧ ][ ((helper #) ∘ [ idₛ (Delay∼ A) , iterₛ∼ g ]ₛ) ⟨$⟩ x
|
||||
≡ ([ [ inj₁ₛ , inj₂ₛ ∘ inj₁ₛ ]ₛ ∘ helper , inj₂ₛ ∘ inj₂ₛ ]ₛ ∘ [ inj₁ₛ , g ]ₛ) # ⟨$⟩ x ]
|
||||
sub-step₁ g {u} = ≡-sym ⟦ B ⟧ (#-Uniformity B {h = [ idₛ (Delayₛ∼ A) , iterₛ∼ g ]ₛ} (λ {y} → last-step {y}))
|
||||
sub-step₁ g {u} = ≡-sym ⟦ B ⟧ (#-Uniformity B {h = [ idₛ (Delay∼ A) , iterₛ∼ g ]ₛ} (λ {y} → last-step {y}))
|
||||
where
|
||||
last-step : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ (Delayₛ∼ A) ][ [ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delayₛ∼ A) , iterₛ∼ g ]ₛ ]ₛ ∘ [ [ inj₁ₛ , inj₂ₛ ∘ inj₁ₛ ]ₛ ∘ helper , inj₂ₛ ∘ inj₂ₛ ]ₛ ∘ [ inj₁ₛ , g ]ₛ ⟨$⟩ x ≡ (helper ∘ [ idₛ (Delayₛ∼ A) , iterₛ∼ g ]ₛ) ⟨$⟩ x ]
|
||||
last-step {inj₁ (now a)} = ≡-refl (⟦ B ⟧ ⊎ₛ (Delayₛ∼ A))
|
||||
last-step {inj₁ (later a)} = ≡-refl (⟦ B ⟧ ⊎ₛ (Delayₛ∼ A))
|
||||
last-step : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ (Delay∼ A) ][ [ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delay∼ A) , iterₛ∼ g ]ₛ ]ₛ ∘ [ [ inj₁ₛ , inj₂ₛ ∘ inj₁ₛ ]ₛ ∘ helper , inj₂ₛ ∘ inj₂ₛ ]ₛ ∘ [ inj₁ₛ , g ]ₛ ⟨$⟩ x ≡ (helper ∘ [ idₛ (Delay∼ A) , iterₛ∼ g ]ₛ) ⟨$⟩ x ]
|
||||
last-step {inj₁ (now a)} = ≡-refl (⟦ B ⟧ ⊎ₛ (Delay∼ A))
|
||||
last-step {inj₁ (later a)} = ≡-refl (⟦ B ⟧ ⊎ₛ (Delay∼ A))
|
||||
last-step {inj₂ a} with g ⟨$⟩ a in eqb
|
||||
... | inj₁ (now b) = ≡-refl (⟦ B ⟧ ⊎ₛ (Delayₛ∼ A))
|
||||
... | inj₁ (later b) = ≡-refl (⟦ B ⟧ ⊎ₛ (Delayₛ∼ A))
|
||||
... | inj₂ b = ≡-refl (⟦ B ⟧ ⊎ₛ (Delayₛ∼ A))
|
||||
... | inj₁ (now b) = ≡-refl (⟦ B ⟧ ⊎ₛ (Delay∼ A))
|
||||
... | inj₁ (later b) = ≡-refl (⟦ B ⟧ ⊎ₛ (Delay∼ A))
|
||||
... | inj₂ b = ≡-refl (⟦ B ⟧ ⊎ₛ (Delay∼ A))
|
||||
step₂ : [ ⟦ B ⟧ ][ ([ inj₁ₛ ∘ (helper #) , inj₂ₛ ]ₛ ∘ (disc-dom g)) # ⟨$⟩ x ≡ ([ inj₁ₛ ∘ delay-lift' , inj₂ₛ ]ₛ ∘ g) # ⟨$⟩ x ]
|
||||
step₂ = #-Uniformity B {h = ‖‖-quote} sub-step₂
|
||||
where
|
||||
|
@ -359,23 +359,23 @@ module Monad.Instance.Setoids.K {ℓ : Level} where
|
|||
→ (<< h >> ∘ (ηₛ A)) ≋ f
|
||||
→ << g >> ≋ << h >>
|
||||
*-uniq' {B} f g h eqᵍ eqʰ {x} = ≡-trans ⟦ B ⟧ (cong << g >> iter-id)
|
||||
(≡-trans ⟦ B ⟧ (preserves g {Delayₛ∼ A} {[ inj₁ₛ ∘ D∼⇒D≈ , inj₂ₛ ]ₛ ∘ helper-now} {x = x})
|
||||
(≡-trans ⟦ B ⟧ (preserves g {Delay∼ A} {[ inj₁ₛ ∘ D∼⇒D≈ , inj₂ₛ ]ₛ ∘ helper-now} {x = x})
|
||||
(≡-trans ⟦ B ⟧ (#-resp-≈ B (λ {x} → helper-eq' {x}) {x})
|
||||
(≡-trans ⟦ B ⟧ (≡-sym ⟦ B ⟧ (preserves h {Delayₛ∼ A} {[ inj₁ₛ ∘ D∼⇒D≈ , inj₂ₛ ]ₛ ∘ helper-now} {x = x}))
|
||||
(≡-trans ⟦ B ⟧ (≡-sym ⟦ B ⟧ (preserves h {Delay∼ A} {[ inj₁ₛ ∘ D∼⇒D≈ , inj₂ₛ ]ₛ ∘ helper-now} {x = x}))
|
||||
(≡-sym ⟦ B ⟧ (cong << h >> iter-id)))))
|
||||
where
|
||||
open Elgot-Algebra B using (_#)
|
||||
D∼⇒D≈ : ∀ {A : Setoid ℓ ℓ} → Delayₛ∼ A ⟶ Delayₛ A
|
||||
D∼⇒D≈ : ∀ {A : Setoid ℓ ℓ} → Delay∼ A ⟶ Delay≈ A
|
||||
D∼⇒D≈ {A} = record { to = λ x → x ; cong = λ eq → ∼⇒≈ eq }
|
||||
|
||||
helper-now₁ : (Delay ∣ A ∣) → (Delay ∣ A ∣ ⊎ (Delay ∣ A ∣))
|
||||
helper-now₁ (now x) = inj₁ (now x)
|
||||
helper-now₁ (later x) = inj₂ (force x)
|
||||
helper-now : Delayₛ∼ A ⟶ ((Delayₛ∼ A) ⊎ₛ (Delayₛ∼ A))
|
||||
helper-now : Delay∼ A ⟶ ((Delay∼ A) ⊎ₛ (Delay∼ A))
|
||||
helper-now = record { to = helper-now₁ ; cong = λ { (now∼ eq) → inj₁ (now∼ eq)
|
||||
; (later∼ eq) → inj₂ (force∼ eq) } }
|
||||
|
||||
helper-eq' : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ∼ A ][ ([ inj₁ₛ ∘ << g >> , inj₂ₛ ]ₛ ∘ [ inj₁ₛ ∘ D∼⇒D≈ , inj₂ₛ ]ₛ ∘ helper-now) ⟨$⟩ x
|
||||
helper-eq' : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delay∼ A ][ ([ inj₁ₛ ∘ << g >> , inj₂ₛ ]ₛ ∘ [ inj₁ₛ ∘ D∼⇒D≈ , inj₂ₛ ]ₛ ∘ helper-now) ⟨$⟩ x
|
||||
≡ ([ inj₁ₛ ∘ << h >> , inj₂ₛ ]ₛ ∘ [ inj₁ₛ ∘ D∼⇒D≈ , inj₂ₛ ]ₛ ∘ helper-now) ⟨$⟩ x ]
|
||||
helper-eq' {now x} = inj₁ (≡-trans ⟦ B ⟧ eqᵍ (≡-sym ⟦ B ⟧ eqʰ))
|
||||
helper-eq' {later x} = inj₂ (∼-refl A)
|
||||
|
|
|
@ -152,7 +152,7 @@ We will usually refer to right-stable free Elgot algebras as just stable Elgot a
|
|||
|
||||
Stability of $KX$ expresses that it somehow behaves like it would in a cartesian closed category, the following theorem should then follow trivially:
|
||||
|
||||
\begin{theorem}
|
||||
\begin{theorem}\label{thm:stability}
|
||||
In a cartesian closed category every free Elgot algebra is stable.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
|
|
|
@ -19,6 +19,7 @@ Morphisms between setoids are functions that respect the equivalence relation:
|
|||
Setoids and setoid morphisms form a category that we call $\setoids$.
|
||||
|
||||
\improvement[inline]{Text is not good}
|
||||
\todo[inline]{sketch the proof that setoids is CCC and cocartesian}
|
||||
|
||||
|
||||
\section{Quotienting the Delay Monad}
|
||||
|
@ -34,7 +35,7 @@ codata (A : Set) : Set where
|
|||
later : Delay A → Delay A
|
||||
\end{minted}
|
||||
|
||||
This style is sometimes called \textit{positively coinductive} and is nowadays advised against in the manuals of both Agda and Coq\todo{cite}. Instead one is advised to use coinductive records, we will heed this advice and use the following representation of the delay monad:
|
||||
This style is sometimes called \textit{positively coinductive} and is nowadays advised against in the manuals of both Agda and Coq\todo{cite}. Instead one is advised to use coinductive records, we will heed this advice and use the following representation of the delay monad in Agda:
|
||||
|
||||
\todo[inline]{cite https://www.cse.chalmers.se/~nad/listings/delay-monad/Delay-monad.html somehow}
|
||||
|
||||
|
@ -70,7 +71,7 @@ We will now introduce two notions of equality on inhabitants of the delay type,
|
|||
$(Delay\;A, \sim)$ is a setoid.
|
||||
\end{lemma}
|
||||
|
||||
In $(Delay\;A, \sim)$ computations with different execution time but the same result are not equal. We will now quotient this type by weak bisimilarity, i.e. we will identify all computations that terminate with the same result. Let us first consider what it means for a computation to evaluate to some result:
|
||||
In $(Delay\;A, \sim)$ computations that evaluate to the same result but in a different amount of time are not equal. We will now quotient this type by weak bisimilarity, i.e. we will identify all computations that terminate with the same result. Let us first consider what it means for a computation to evaluate to some result:
|
||||
|
||||
\[
|
||||
\inferrule*{eq : x =^A y}{now\; eq : now\;x \downarrow y} \hskip 1cm
|
||||
|
@ -102,9 +103,57 @@ Now we can relate two computations \textit{iff} they evaluate to the same result
|
|||
force (μ' x) = μ (force x)
|
||||
\end{minted}
|
||||
|
||||
The monad laws have already been proven in~\cite{quotienting} and in our own formalization, we will not reiterate the proofs here.
|
||||
The monad laws have already been proven in~\cite{quotienting} and in our own formalization so we will not reiterate the proofs here.
|
||||
\end{proof}
|
||||
|
||||
\section{An instance of K}
|
||||
\todo[inline]{proof: delay is free elgot}
|
||||
\begin{theorem}
|
||||
$(Delay\;A , \approx)$ is an instance of $\mathbf{K}$ in the category $\setoids$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
We need to show that for every setoid $(A, =^A)$ the resulting setoid $(Delay\;A, \approx)$ can be extended to a stable free Elgot algebra.
|
||||
Stability follows automatically by theorem~\ref{thm:stability} and the fact that $\setoids$ is cartesian closed, so it suffices to define a free elgot Algebra on $(Delay\;A, \approx)$.
|
||||
|
||||
Let $(X , =^X) \in \obj{\setoids}$ and $f : X \rightarrow Delay\; A + X$ be a setoid morphism, we define $f^\# : X \rightarrow Delay\;A$ pointwise:
|
||||
\[
|
||||
f^\# (x) :=
|
||||
\begin{cases}
|
||||
a & \text{if } f\;x = i_1 (a)\\
|
||||
later\;(f^{\#'} a) & \text{if } f\;x = i_2 (a)
|
||||
\end{cases}
|
||||
\]
|
||||
where $f^{\#'} : X \rightarrow Delay'\;A$ is defined corecursively by:
|
||||
\[
|
||||
force (f^{\#'}(x)) = f^\#(x)
|
||||
\]
|
||||
|
||||
Let us first show that $f^\#$ is a setoid morphism, i.e. given $x, y : X$ with $x =^X y$, we need to show that $f^\#(x) = f^\#(y)$. Since $f$ is a setoid morphism we know that $f(x) =^+ f(y)$ in the coproduct setoid $(Delay\;A + X, =^+)$. We proceed by case distinction on $f(x)$:
|
||||
|
||||
\begin{itemize}
|
||||
\item Case $f(x) = i_1 (a)$:
|
||||
\[f^\# (x) = a = f^\#(y)\]
|
||||
|
||||
\item Case $f(x) = i_2 (a)$:
|
||||
\[f^\# (x) = later (f^{\#'}(a)) = f^\# (y)\]
|
||||
\end{itemize}
|
||||
|
||||
Now we check the iteration laws:
|
||||
|
||||
\change[inline]{change the equivalence sign of coproducts}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Fixpoint}: We need to show that $f^\# (x) \approx ([ id , f^\# ] \circ f)(x)$:
|
||||
|
||||
\begin{itemize}
|
||||
\item Case $f(x) =^+ i_1 (a)$:
|
||||
\[ f^\#(x) \approx a \approx [ id , f^\# ] (i_1 (a)) = ([ id , f^\# ] \circ f) (x) \]
|
||||
\item Case $f(x) =^+ i_2 (a)$:
|
||||
\[ f^\#(x) \approx later (f^{\#'}(a)) \overset{(*)}{\approx} f^\#(a) \approx [ id , f^\# ] (i_2 (a)) \approx ([ id , f^\# ] \circ f) (x)\]
|
||||
\end{itemize}
|
||||
where $(*)$ follows from a general fact: any $z : Delay'\;A$ satisfies $force\;z \approx later\;z$.
|
||||
\item \textbf{Uniformity}: Let $(Y , =^Y) \in \setoids$ and $g : Y \rightarrow Delay\; A + Y, h : X \rightarrow Y$ be setoid morphisms with $(id + h) \circ f = g \circ h$.
|
||||
\item \textbf{Folding}:
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\end{proof}
|
||||
|
|
Loading…
Reference in a new issue