mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
minor and add sergeys suggestion
This commit is contained in:
parent
4aaf6ff164
commit
8e6e1d01cd
2 changed files with 100 additions and 4 deletions
|
@ -1,7 +1,7 @@
|
|||
```agda
|
||||
{-# OPTIONS --allow-unsolved-metas --guardedness #-}
|
||||
|
||||
open import Level
|
||||
open import Level renaming (zero to ℓ-zero; suc to ℓ-suc)
|
||||
open import Function.Equality as SΠ renaming (id to idₛ)
|
||||
open import Relation.Binary
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
|
@ -12,6 +12,8 @@ open import Function using (id)
|
|||
open import Categories.Monad
|
||||
open import Categories.Category.Instance.Setoids
|
||||
open import Categories.NaturalTransformation hiding (id)
|
||||
open import Data.Product
|
||||
open import Data.Nat using (ℕ; suc; zero)
|
||||
|
||||
module Monad.Instance.K.Instance.D {c ℓ} where
|
||||
|
||||
|
@ -173,7 +175,20 @@ module Bisimilarity (A : Setoid c (c ⊔ ℓ)) where
|
|||
|
||||
force≈ (≈′-trans x≈′y y≈′z) = ≈-trans (force≈ x≈′y) (force≈ y≈′z)
|
||||
|
||||
open Bisimilarity renaming (_≈_ to [_][_≈_]; _≈′_ to [_][_≈′_]; _∼_ to [_][_∼_]; _∼′_ to [_][_∼′_]; _↓_ to [_][_↓_])
|
||||
mutual
|
||||
data _≲_ : Delay ∣ A ∣ → Delay ∣ A ∣ → Set (c ⊔ ℓ) where
|
||||
↓≲ : ∀ {y a} (y↓a : y ↓ a) → now a ≲ y
|
||||
later≲ : ∀ {x y} (x≈y : force x ≲′ force y) → later x ≲ later y
|
||||
|
||||
record _≲′_ (x y : Delay ∣ A ∣) : Set (c ⊔ ℓ) where
|
||||
coinductive
|
||||
|
||||
field
|
||||
force≲ : x ≲ y
|
||||
|
||||
open _≲′_ public
|
||||
|
||||
open Bisimilarity renaming (_≈_ to [_][_≈_]; _≈′_ to [_][_≈′_]; _∼_ to [_][_∼_]; _∼′_ to [_][_∼′_]; _↓_ to [_][_↓_]; _≲_ to [_][_≲_]; _≲′_ to [_][_≲′_])
|
||||
|
||||
|
||||
module DelayMonad where
|
||||
|
@ -351,4 +366,54 @@ module DelayMonad where
|
|||
; identityˡ = identityˡ
|
||||
; identityʳ = identityʳ
|
||||
}
|
||||
|
||||
module extra {A : Setoid c (c ⊔ ℓ)} where
|
||||
≲→≈ : {x y : Delay ∣ A ∣} → [ A ][ x ≲ y ] → [ A ][ x ≈ y ]
|
||||
≲→≈′ : {x y : Delay ∣ A ∣} → [ A ][ x ≲′ y ] → [ A ][ x ≈′ y ]
|
||||
|
||||
≲→≈ (↓≲ y↓a) = ↓≈ (≡-refl A) (now↓ (≡-refl A)) y↓a
|
||||
≲→≈ (later≲ x≈y) = later≈ (≲→≈′ x≈y)
|
||||
|
||||
force≈ (≲→≈′ x≲′y) = ≲→≈ (force≲ x≲′y)
|
||||
|
||||
race : Delay ∣ A ∣ → Delay ∣ A ∣ → Delay ∣ A ∣
|
||||
race′ : Delay′ ∣ A ∣ → Delay′ ∣ A ∣ → Delay′ ∣ A ∣
|
||||
|
||||
race (now a) _ = now a
|
||||
race (later x) (now a) = now a
|
||||
race (later x) (later y) = later (race′ x y)
|
||||
|
||||
force (race′ x y) = race (force x) (force y)
|
||||
|
||||
≈→≲₀ : ∀ {x y a b} (x↓a : [ A ][ x ↓ a ]) (y↓b : [ A ][ y ↓ b ]) (a≡b : [ A ][ a ≡ b ]) → [ A ][ race x y ≲ y ]
|
||||
≈→≲₀ (now↓ x≡a) y↓b a≡b = ↓≲ (≡↓ A (≡-sym A (≡-trans A x≡a a≡b)) y↓b)
|
||||
≈→≲₀ (later↓ x↓a) (now↓ x≡y) a≡b = ↓≲ (now↓ (≡-refl A))
|
||||
≈→≲₀ (later↓ x↓a) (later↓ y↓b) a≡b = later≲ (record { force≲ = ≈→≲₀ x↓a y↓b a≡b })
|
||||
|
||||
≈→≲ : {x y : Delay ∣ A ∣} → [ A ][ x ≈ y ] → [ A ][ race x y ≲ y ]
|
||||
≈′→≲′ : {x y : Delay ∣ A ∣} → [ A ][ x ≈′ y ] → [ A ][ race x y ≲′ y ]
|
||||
|
||||
≈→≲ (↓≈ a≡b x↓a y↓b) = ≈→≲₀ x↓a y↓b a≡b
|
||||
≈→≲ (later≈ x≈y) = later≲ (≈′→≲′ x≈y)
|
||||
|
||||
force≲ (≈′→≲′ x≈′y) = ≈→≲ (force≈ x≈′y)
|
||||
|
||||
delta₀ : {x : Delay ∣ A ∣} {a : ∣ A ∣} → (x↓a : [ A ][ x ↓ a ]) → ℕ
|
||||
delta₀ {x} (now↓ x≡y) = zero
|
||||
delta₀ (later↓ x↓a) = suc (delta₀ x↓a)
|
||||
|
||||
delta : {x y : Delay ∣ A ∣} → [ A ][ x ≲ y ] → Delay (∣ A ∣ × ℕ)
|
||||
delta′ : {x y : Delay ∣ A ∣} → [ A ][ x ≲′ y ] → Delay′ (∣ A ∣ × ℕ)
|
||||
|
||||
delta (↓≲ {x}{a} x↓a) = now (a , delta₀ x↓a)
|
||||
delta (later≲ x≲′y) = later (delta′ x≲′y)
|
||||
|
||||
force (delta′ x≲′y) = delta (force≲ x≲′y)
|
||||
|
||||
ι : ∣ A ∣ × ℕ → Delay ∣ A ∣
|
||||
ι′ : ∣ A ∣ × ℕ → Delay′ ∣ A ∣
|
||||
force (ι′ p) = ι p
|
||||
ι (x , zero) = now x
|
||||
ι (x , suc n) = later (ι′ (x , n))
|
||||
|
||||
```
|
||||
|
|
|
@ -14,6 +14,7 @@ open import FreeObject
|
|||
open import Categories.FreeObjects.Free
|
||||
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
|
||||
open import Categories.Category.Instance.Properties.Setoids.Choice using ()
|
||||
open import Data.Product.Relation.Binary.Pointwise.NonDependent
|
||||
```
|
||||
-->
|
||||
|
||||
|
@ -176,7 +177,13 @@ module Monad.Instance.Setoids.K' {ℓ : Level} where
|
|||
helper₁ (later x) = inj₂ (force x)
|
||||
-- -- setoid-morphism that preserves strong-bisimilarity
|
||||
helper : Delayₛ' A ⟶ ⟦ B ⟧ ⊎ₛ Delayₛ' A
|
||||
helper = record { _⟨$⟩_ = helper₁ ; cong = {! !} }
|
||||
helper = record { _⟨$⟩_ = helper₁ ; cong = strong-cong }
|
||||
where
|
||||
strong-cong : ∀ {x y : Delay ∣ A ∣} → [ A ][ x ∼ y ] → [ ⟦ B ⟧ ⊎ₛ Delayₛ' A ][ helper₁ x ≡ helper₁ y ]
|
||||
strong-cong {.(now _)} {.(now _)} (now∼ x≡y) = cong (inj₁ₛ {_} {_} {_} {_} {⟦ B ⟧} {Delayₛ' A}) (cong f x≡y)
|
||||
strong-cong {.(later _)} {.(later _)} (later∼ x∼y) = cong (inj₂ₛ {_} {_} {_} {_} {⟦ B ⟧} {Delayₛ' A}) (force∼ x∼y)
|
||||
|
||||
<<_>> = Elgot-Algebra-Morphism.h
|
||||
|
||||
freeAlgebra : ∀ (A : Setoid ℓ ℓ) → FreeObject elgotForgetfulF A
|
||||
freeAlgebra A = record
|
||||
|
@ -184,6 +191,30 @@ module Monad.Instance.Setoids.K' {ℓ : Level} where
|
|||
; η = ηₛ A
|
||||
; _* = delay-lift
|
||||
; *-lift = λ {B} f {x} {y} x≡y → ≡-trans ⟦ B ⟧ (Elgot-Algebra.#-Fixpoint B (now∼ x≡y)) (≡-refl ⟦ B ⟧)
|
||||
; *-uniq = λ {B} f g eq {x} {y} x≡y → {! !} -- TODO pattern match x and y
|
||||
; *-uniq = λ {B} f g eq {x} {y} x≡y → *-uniq' {B} f g eq {x} {y} x≡y
|
||||
}
|
||||
where
|
||||
*-uniq' : ∀ {B : Elgot-Algebra} (f : A ⟶ ⟦ B ⟧) (g : Elgot-Algebra-Morphism (delay-algebras A) B) (eq : (<< g >> ∘ (ηₛ A)) ≋ f) {x y : Delay ∣ A ∣} → [ A ][ x ≈ y ] → [_][_≡_] (⟦ B ⟧) ((<< g >>) ⟨$⟩ x) ((<< delay-lift f >>) ⟨$⟩ y)
|
||||
*-uniq' {B} f g eq {now x} {now y} x≡y = ≡-trans ⟦ B ⟧ (eq {x} {y} (now-inj x≡y)) (≡-refl ⟦ B ⟧)
|
||||
*-uniq' {B} f g eq {now x} {later y} x≡y = {! !}
|
||||
*-uniq' {B} f g eq {later x} {now y} x≡y = {! !}
|
||||
*-uniq' {B} f g eq {later x} {later y} x≡y = {! !}
|
||||
|
||||
|
||||
|
||||
-- TODO stability might be proven more general, since Setoids is CCC (whatever is easier)
|
||||
|
||||
delay-stability : ∀ (Y : Setoid ℓ ℓ) (X : Setoid ℓ ℓ) (B : Elgot-Algebra) (f : X ×ₛ Y ⟶ ⟦ B ⟧) → X ×ₛ Delayₛ Y ⟶ ⟦ B ⟧
|
||||
delay-stability Y X B f = {! !}
|
||||
|
||||
isStableFreeElgotAlgebra : ∀ (A : Setoid ℓ ℓ) → IsStableFreeElgotAlgebra (freeAlgebra A)
|
||||
isStableFreeElgotAlgebra A = record
|
||||
{ [_,_]♯ = λ {X} B f → delay-stability A X B f
|
||||
; ♯-law = {! !}
|
||||
; ♯-preserving = {! !}
|
||||
; ♯-unique = {! !}
|
||||
}
|
||||
|
||||
delayK : MonadK
|
||||
delayK = record { freealgebras = freeAlgebra ; stable = isStableFreeElgotAlgebra }
|
||||
```
|
Loading…
Reference in a new issue