diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml new file mode 100644 index 0000000..a7d1db6 --- /dev/null +++ b/.gitlab-ci.yml @@ -0,0 +1,16 @@ +variables: + LATEX_IMAGE: listx/texlive:2020 + +build: + image: $LATEX_IMAGE + script: + - cd thesis + - latexmk -pdf -xelatex -shell-escape main.tex + - cd ../slides + - latexmk -pdf -xelatex -shell-escape main.tex + + artifacts: + paths: + - "thesis/*.pdf" + - "slides/*.pdf" + diff --git a/slides/.vscode/settings.json b/slides/.vscode/settings.json index 659398f..a99f0e0 100644 --- a/slides/.vscode/settings.json +++ b/slides/.vscode/settings.json @@ -24,4 +24,4 @@ ] } ] - } \ No newline at end of file + } diff --git a/slides/main.tex b/slides/main.tex index 5b1ac36..65836cb 100644 --- a/slides/main.tex +++ b/slides/main.tex @@ -149,8 +149,10 @@ Leon Vatthauer%\inst{1} } \usepackage{multicol} -\usepackage{fontspec} -\setmonofont{Noto Sans Mono} + +\usepackage{noto-mono} +% \usepackage{fontspec} +% \setmonofont{Noto Sans Mono} \usepackage{lmodern} diff --git a/thesis/main.tex b/thesis/main.tex index b76f688..a228456 100644 --- a/thesis/main.tex +++ b/thesis/main.tex @@ -53,7 +53,7 @@ \chaptermark{#1}% \addcontentsline{toc}{chapter}{#1}} -\newcommand\C{\mathcal{C}} +%\newcommand\C{\mathcal{C}} \declaretheorem[name=Definition,style=definition,numberwithin=chapter]{definition} \declaretheorem[name=Example,style=definition,sibling=definition]{example} @@ -90,8 +90,9 @@ \newcommand*{\theauthor}{\@author} \makeatother -\usepackage{fontspec} -\setmonofont{Noto Sans Mono} +\usepackage{noto-mono} +%\usepackage{fontspec} +%\setmonofont{Noto Sans Mono} \begin{document} diff --git a/thesis/src/01_preliminaries.tex b/thesis/src/01_preliminaries.tex index d931b3d..dc06099 100644 --- a/thesis/src/01_preliminaries.tex +++ b/thesis/src/01_preliminaries.tex @@ -149,7 +149,7 @@ When modelling partiality with a monad, one would expect the following two progr \end{multicols} where p and q are (partial) computations. This condition can be expressed categorically, but first we need another definition: -\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\C$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions: +\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\mathcal{C}$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions: \begin{enumerate} \item $M\pi_2 \circ \tau_{1,X} = \pi_2$ \item $M \alpha_{X,Y,Z} \circ \tau_{X \times Y, Z} = \tau_{X, Y\times Z} \circ (id_X \times \tau_{Y, Z}) \circ \alpha_{X,Y,MZ}$