mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Finished extend congruence proof
This commit is contained in:
parent
86c5be9e2f
commit
9657864092
2 changed files with 69 additions and 26 deletions
41
src/FinalCoalgebras.lagda.md
Normal file
41
src/FinalCoalgebras.lagda.md
Normal file
|
@ -0,0 +1,41 @@
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Categories.Category
|
||||||
|
open import Categories.Functor
|
||||||
|
import Categories.Morphism as M
|
||||||
|
import Categories.Morphism.Reasoning as MR
|
||||||
|
|
||||||
|
module FinalCoalgebras {o ℓ e} {C : Category o ℓ e} (F : Endofunctor C) where
|
||||||
|
open Category C renaming (id to idC)
|
||||||
|
open import Categories.Object.Terminal
|
||||||
|
open import Categories.Functor.Coalgebra
|
||||||
|
open import Categories.Category.Construction.F-Coalgebras
|
||||||
|
open Functor F
|
||||||
|
open MR C
|
||||||
|
open HomReasoning
|
||||||
|
open Equiv
|
||||||
|
|
||||||
|
lemma : ∀ {X} → {f g : X ⇒ F₀ X} → f ≈ g → (terminal : Terminal (F-Coalgebras F)) → F-Coalgebra-Morphism.f (Terminal.! terminal {A = (to-Coalgebra f)}) ≈ F-Coalgebra-Morphism.f (Terminal.! terminal {A = (to-Coalgebra g)})
|
||||||
|
lemma {X} {f} {g} eq terminal = begin
|
||||||
|
F-Coalgebra-Morphism.f (Terminal.! terminal) ≈⟨ Terminal.!-unique terminal (record
|
||||||
|
{ f = F-Coalgebra-Morphism.f (Terminal.! terminal {A = (to-Coalgebra g)}) ∘ F-Coalgebra-Morphism.f from
|
||||||
|
; commutes = begin
|
||||||
|
F-Coalgebra.α (Terminal.⊤ terminal) ∘ F-Coalgebra-Morphism.f (IsTerminal.! (Terminal.⊤-is-terminal terminal)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ○ F-Coalgebra-Morphism.commutes (Terminal.! terminal) ⟩
|
||||||
|
F₁ (F-Coalgebra-Morphism.f (Terminal.! terminal)) ∘ g ≈⟨ refl⟩∘⟨ ⟺ eq ⟩
|
||||||
|
F₁ (F-Coalgebra-Morphism.f (Terminal.! terminal)) ∘ f ≈˘⟨ F-resp-≈ identityʳ ⟩∘⟨refl ⟩
|
||||||
|
F₁ (F-Coalgebra-Morphism.f (Terminal.! terminal) ∘ idC) ∘ f ∎
|
||||||
|
}) ⟩
|
||||||
|
F-Coalgebra-Morphism.f (Terminal.! terminal) ∘ idC ≈⟨ identityʳ ⟩
|
||||||
|
F-Coalgebra-Morphism.f (Terminal.! terminal) ∎
|
||||||
|
where
|
||||||
|
eq' : M._≅_ (F-Coalgebras F) (to-Coalgebra f) (to-Coalgebra g)
|
||||||
|
eq' = record
|
||||||
|
{ from = record { f = idC ; commutes = id-comm ○ ⟺ identity ⟩∘⟨ ⟺ eq }
|
||||||
|
; to = record { f = idC ; commutes = id-comm ○ ⟺ identity ⟩∘⟨ eq }
|
||||||
|
; iso = record
|
||||||
|
{ isoˡ = identity²
|
||||||
|
; isoʳ = identity²
|
||||||
|
}
|
||||||
|
}
|
||||||
|
open M._≅_ eq'
|
||||||
|
```
|
|
@ -20,6 +20,7 @@ open import Categories.Functor.Algebra
|
||||||
open import Categories.Monad.Construction.Kleisli
|
open import Categories.Monad.Construction.Kleisli
|
||||||
open import Categories.Category.Construction.F-Coalgebras
|
open import Categories.Category.Construction.F-Coalgebras
|
||||||
open import Categories.NaturalTransformation
|
open import Categories.NaturalTransformation
|
||||||
|
open import FinalCoalgebras
|
||||||
import Categories.Morphism as M
|
import Categories.Morphism as M
|
||||||
import Categories.Morphism.Reasoning as MR
|
import Categories.Morphism.Reasoning as MR
|
||||||
```
|
```
|
||||||
|
@ -92,7 +93,6 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
|
|
||||||
coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f
|
coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f
|
||||||
coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
|
coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
|
||||||
|
|
||||||
monad : Monad C
|
monad : Monad C
|
||||||
monad = Kleisli⇒Monad C (record
|
monad = Kleisli⇒Monad C (record
|
||||||
{ F₀ = D₀
|
{ F₀ = D₀
|
||||||
|
@ -119,31 +119,14 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
(idC +₁ extend (now X)) ∘ out X ∎ })
|
(idC +₁ extend (now X)) ∘ out X ∎ })
|
||||||
; assoc = {! !}
|
; assoc = {! !}
|
||||||
; sym-assoc = {! !}
|
; sym-assoc = {! !}
|
||||||
; extend-≈ = λ {X} {Y} {f} {g} eq → {! !}
|
; extend-≈ = λ {X} {Y} {f} {g} eq → begin
|
||||||
|
F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (Terminal.!-unique (algebras Y) (record { f = (F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ; commutes = begin
|
||||||
-- begin
|
F-Coalgebra.α (Terminal.⊤ (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
||||||
-- extend f ≈⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend f ; commutes = F-Coalgebra-Morphism.commutes {! !} })) ⟩
|
F-Coalgebra.α (Terminal.⊤ (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ≈⟨ F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y)) ⟩
|
||||||
-- F-Coalgebra-Morphism.f ((Terminal.! (algebras Y) {A = alg' {X} {Y}})) ≈˘⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend g ; commutes = {! !} })) ⟩
|
Functor.F₁ (delayF Y) (F-Coalgebra-Morphism.f (Terminal.! (algebras Y))) ∘ F-Coalgebra.α (alg g) ≈˘⟨ (Functor.F-resp-≈ (delayF Y) identityʳ) ⟩∘⟨ (αf≈αg eq) ⟩
|
||||||
-- extend g ∎
|
Functor.F₁ (delayF Y) (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC) ∘ F-Coalgebra.α (alg f) ∎ })) ⟩∘⟨refl ⟩
|
||||||
|
(F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩
|
||||||
-- let
|
extend g ∎
|
||||||
-- h : F-Coalgebra-Morphism (alg f) (alg g)
|
|
||||||
-- h = record { f = idC ; commutes = begin
|
|
||||||
-- F-Coalgebra.α (alg g) ∘ idC ≈⟨ id-comm ⟩
|
|
||||||
-- idC ∘ F-Coalgebra.α (alg g) ≈⟨ refl⟩∘⟨ []-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ (sym eq))) refl) ⟩∘⟨refl) refl ⟩
|
|
||||||
-- idC ∘ F-Coalgebra.α (alg f) ≈˘⟨ ([]-cong₂ identityʳ identityʳ ○ +-η) ⟩∘⟨refl ⟩
|
|
||||||
-- (idC +₁ idC) ∘ F-Coalgebra.α (alg f) ∎ }
|
|
||||||
-- x : F-Coalgebra-Morphism (alg f) (Terminal.⊤ (algebras Y))
|
|
||||||
-- x = (F-Coalgebras (delayF Y)) [ Terminal.! (algebras Y) ∘ h ]
|
|
||||||
-- in Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = {! !} } ⟩∘⟨refl
|
|
||||||
|
|
||||||
-- extend f ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩
|
|
||||||
-- out⁻¹ Y ∘ out Y ∘ extend f ≈⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg f})) ⟩
|
|
||||||
-- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ ((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y) {A = alg f}} {g = Terminal.! (algebras Y) {A = alg f}}) ⟩∘⟨ ([]-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ eq)) refl) ⟩∘⟨refl) refl)) ⟩∘⟨refl) ⟩
|
|
||||||
-- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ (((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = record { f = F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ; commutes = {! !} }})) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
|
||||||
-- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈˘⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg g})) ⟩
|
|
||||||
-- out⁻¹ Y ∘ out Y ∘ extend g ≈˘⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩
|
|
||||||
-- extend g ∎
|
|
||||||
})
|
})
|
||||||
where
|
where
|
||||||
alg' : ∀ {X Y} → F-Coalgebra (delayF Y)
|
alg' : ∀ {X Y} → F-Coalgebra (delayF Y)
|
||||||
|
@ -169,6 +152,25 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
[ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₂ ] ∘ (out Y ∘ f)
|
[ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₂ ] ∘ (out Y ∘ f)
|
||||||
, (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩
|
, (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩
|
||||||
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
|
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
|
||||||
|
αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → F-Coalgebra.α (alg f) ≈ F-Coalgebra.α (alg g)
|
||||||
|
αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl
|
||||||
|
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (delayF Y)) (alg f) (alg g)
|
||||||
|
alg-f≈alg-g {X} {Y} {f} {g} eq = record
|
||||||
|
{ from = record { f = idC ; commutes = begin
|
||||||
|
F-Coalgebra.α (alg g) ∘ idC ≈⟨ identityʳ ⟩
|
||||||
|
F-Coalgebra.α (alg g) ≈⟨ ⟺ (αf≈αg eq) ⟩
|
||||||
|
F-Coalgebra.α (alg f) ≈˘⟨ elimˡ (Functor.identity (delayF Y)) ⟩
|
||||||
|
Functor.F₁ (delayF Y) idC ∘ F-Coalgebra.α (alg f) ∎ }
|
||||||
|
; to = record { f = idC ; commutes = begin
|
||||||
|
F-Coalgebra.α (alg f) ∘ idC ≈⟨ identityʳ ⟩
|
||||||
|
F-Coalgebra.α (alg f) ≈⟨ αf≈αg eq ⟩
|
||||||
|
F-Coalgebra.α (alg g) ≈˘⟨ elimˡ (Functor.identity (delayF Y)) ⟩
|
||||||
|
Functor.F₁ (delayF Y) idC ∘ F-Coalgebra.α (alg g) ∎ }
|
||||||
|
; iso = record
|
||||||
|
{ isoˡ = identity²
|
||||||
|
; isoʳ = identity²
|
||||||
|
}
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
### Old definitions:
|
### Old definitions:
|
||||||
|
|
Loading…
Reference in a new issue