mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
idea
This commit is contained in:
parent
5f836b4d89
commit
978eb83a7f
2 changed files with 20 additions and 15 deletions
|
@ -1,4 +1,4 @@
|
|||
\documentclass[a4paper,11pt,numbers=noenddot]{scrbook}
|
||||
\documentclass[a4paper,11pt,numbers=noenddot, draft]{scrbook}
|
||||
|
||||
\usepackage[top=2cm,lmargin=1in,rmargin=1in,bottom=3cm,hmarginratio=1:1]{geometry}
|
||||
\usepackage[ngerman, main=british]{babel}
|
||||
|
@ -104,7 +104,8 @@
|
|||
\makeatother
|
||||
|
||||
|
||||
\usepackage{noto-mono}
|
||||
% \usepackage{noto-mono}
|
||||
% TODO Need different mono font, noto-mono has weird font sizing...
|
||||
\usepackage{unicode-math}
|
||||
% \setmainfont{STIX-Regular}
|
||||
% \setmathfont{STIX Two Math Regular}
|
||||
|
|
|
@ -159,23 +159,19 @@ Now, we call two computations \(p\) and \(q\) \emph{weakly bisimilar} or \(p \ap
|
|||
\begin{proof}
|
||||
The monad unit is the constructor \texttt{now} and the multiplication can be defined as follows:
|
||||
|
||||
\begin{minted}{agda}
|
||||
μ : Delay (Delay X) → Delay X
|
||||
μ' : Delay' (Delay X) → Delay' X
|
||||
μ (now x) = x
|
||||
μ (later x) = later (μ' x)
|
||||
force (μ' x) = μ (force x)
|
||||
\end{minted}
|
||||
\[\mu\;x = \begin{cases}
|
||||
z & \text{if } x = now\;z \\
|
||||
later(\mu\;z) & \text{if } x = later\;z
|
||||
\end{cases}\]
|
||||
|
||||
The monad laws have already been proven in~\cite{quotienting} and in our own formalization, so we will not reiterate the proofs here.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}
|
||||
Every \((Delay\;A , \approx)\) can be equipped with a free Elgot algebra structure.
|
||||
\end{theorem}
|
||||
\begin{lemma}\label{lem:Delgot}
|
||||
Every \((Delay\;A , \approx)\) can be equipped with an Elgot algebra structure.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
We need to show that for every setoid \((A, =^A)\) the resulting setoid \((Delay\;A, \approx)\) can be extended to a free Elgot algebra.
|
||||
% Stability follows automatically by \autoref{thm:stability} and the fact that \(\setoids\) is Cartesian closed, so it suffices to define a free Elgot Algebra on \((Delay\;A, \approx)\).
|
||||
We need to show that for every setoid \((A, =^A)\) the resulting setoid \((Delay\;A, \approx)\) can be extended to an Elgot algebra.
|
||||
|
||||
Let \((X , \overset{X}{=}) \in \obj{\setoids}\) and \(f : X \rightarrow Delay\; A + X\) be a setoid morphism, we define \(f^\sharp : X \rightarrow Delay\;A\) point wise:
|
||||
\[
|
||||
|
@ -260,8 +256,16 @@ Now, we call two computations \(p\) and \(q\) \emph{weakly bisimilar} or \(p \ap
|
|||
\end{alignat*}
|
||||
\end{mycase}
|
||||
\end{itemize}
|
||||
This concludes the proof that every \((Delay\;A,\approx)\) can be extended to an Elgot algebra, let us now show that these Elgot algebras are free.
|
||||
This concludes the proof that every \((Delay\;A,\approx)\) can be extended to an Elgot algebra.
|
||||
\end{proof}
|
||||
|
||||
\todo[inline]{Discretization corollary here}
|
||||
|
||||
\begin{theorem}\label{thm:Dfreeelgot}
|
||||
Every \((Delay\;A , \approx)\) can be equipped with a free Elgot algebra structure.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
We build on \autoref{lem:Delgot}, it thus suffices to show that the induced Elgot algebras are free.
|
||||
Given an Elgot algebra \((B , \overset{B}{=}, {(-)}^{\sharp_b})\) and a setoid morphism \(f : A \rightarrow B\). We need to define an Elgot algebra morphism \(\free{f} : Delay\;A \rightarrow B\). Consider \(g : Delay\;A \rightarrow B + Delay\;A\) defined by
|
||||
\[g\;x =
|
||||
\begin{cases}
|
||||
|
|
Loading…
Reference in a new issue