From a6fd66ef29314c7bd1257c37e51e161947f1cd5e Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Tue, 9 Jan 2024 15:49:15 +0100 Subject: [PATCH] sync --- agda/src/Monad/Instance/Setoids/K'.lagda.md | 29 ++++++++++++++++----- 1 file changed, 22 insertions(+), 7 deletions(-) diff --git a/agda/src/Monad/Instance/Setoids/K'.lagda.md b/agda/src/Monad/Instance/Setoids/K'.lagda.md index 3319e7e..33ce030 100644 --- a/agda/src/Monad/Instance/Setoids/K'.lagda.md +++ b/agda/src/Monad/Instance/Setoids/K'.lagda.md @@ -230,15 +230,30 @@ module Monad.Instance.Setoids.K' {ℓ : Level} where -- Should follow by compositionality + fixpoint eq₁ : [ ⟦ B ⟧ ][ (B Elgot-Algebra.#) helper' ⟨$⟩ z ≡ (B Elgot-Algebra.#) helper ⟨$⟩ liftF proj₁ z ] - eq₁ = {!!} + eq₁ = {! !} + + + -- eq : ∀ {x y} → [ A ×ₛ ℕ-setoid ][ x ∼ y ] → [ ⟦ B ⟧ ⊎ₛ Delayₛ' A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' x) ≡ (helper₁ ∘′ μ ∘′ (liftF ι)) y ] + -- eq {now (x , zero)} {now (y , zero)} (now∼ (x≡y , _)) = cong (inj₁ₛ {_} {_} {_} {_} {⟦ B ⟧} {Delayₛ' A}) (cong f x≡y) + -- eq {now (x , suc n)} {now (y , suc m)} (now∼ (x≡y , n≡m)) with helper₁' (now (x , n)) in eqr + -- ... | inj₁ r = {! eq {now (x , n)} {now (y , m)} !} -- problem: recursive call to eq does not pass termination checker + -- where + -- help : [ ⟦ B ⟧ ⊎ₛ Delayₛ' A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' (now (x , n))) ≡ inj₁ r ] + -- help = cong [ inj₁ₛ , (inj₂ₛ ∘ μₛ∼ A ∘ liftFₛ∼ ιₛ') ]ₛ (≡→≡ eqr) + -- ... | inj₂ r = {! !} + -- eq {.(later _)} {.(later _)} (later∼ x≡y) = cong (inj₂ₛ {_} {_} {_} {_} {⟦ B ⟧} {Delayₛ' A}) (cong (μₛ∼ A) (cong (liftFₛ∼ ιₛ') (force∼ x≡y))) eq : ∀ {x y} → [ A ×ₛ ℕ-setoid ][ x ∼ y ] → [ ⟦ B ⟧ ⊎ₛ Delayₛ' A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' x) ≡ (helper₁ ∘′ μ ∘′ (liftF ι)) y ] - eq {now (x , zero)} {now (y , zero)} (now∼ (x≡y , _)) = cong (inj₁ₛ {_} {_} {_} {_} {⟦ B ⟧} {Delayₛ' A}) (cong f x≡y) - -- eq {now (x , suc n)} {now (y , suc m)} (now∼ (x≡y , n≡m)) with helper₁' (now (x , n)) - -- ... | inj₁ r = {! !} -- <- contradiction! - -- ... | inj₂ r = {! !} - eq {now (x , suc n)} {now (y , suc m)} (now∼ (x≡y , n≡m)) = {! !} - -- TODO induction, by a recursive call to eq, we will get info about helper₁' (now (x , n)) + eq {now (x , n)} {now (y , m)} (now∼ p∼q) = eq' {n} {m} {x} {y} (now∼ p∼q) + where + eq' : ∀ {n m x y} → [ A ×ₛ ℕ-setoid ][ now (x , n) ∼ now (y , m) ] → [ ⟦ B ⟧ ⊎ₛ Delayₛ' A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' (now (x , n))) ≡ (helper₁ ∘′ μ ∘′ (liftF ι)) (now (y , m)) ] + eq' {zero} {zero} {x} {y} (now∼ (x≡y , _)) = cong (inj₁ₛ {_} {_} {_} {_} {⟦ B ⟧} {Delayₛ' A}) (cong f x≡y) + eq' {suc n} {suc m} {x} {y} (now∼ (x≡y , sn≡sm)) with helper₁' (now (x , n)) in eqr + ... | inj₁ r = ≡-trans (⟦ B ⟧ ⊎ₛ Delayₛ' A) (≡-sym (⟦ B ⟧ ⊎ₛ Delayₛ' A) help) (≡-trans (⟦ B ⟧ ⊎ₛ Delayₛ' A) (eq' {n} {m} {x} {y} (now∼ (x≡y , suc-inj sn≡sm))) {! -should this be provable?- !}) + where + help : [ ⟦ B ⟧ ⊎ₛ Delayₛ' A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' (now (x , n))) ≡ inj₁ r ] + help = cong [ inj₁ₛ , (inj₂ₛ ∘ μₛ∼ A ∘ liftFₛ∼ ιₛ') ]ₛ (≡→≡ eqr) + ... | inj₂ r = {! !} eq {.(later _)} {.(later _)} (later∼ x≡y) = cong (inj₂ₛ {_} {_} {_} {_} {⟦ B ⟧} {Delayₛ' A}) (cong (μₛ∼ A) (cong (liftFₛ∼ ιₛ') (force∼ x≡y))) -- Should follow by uniformity