mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
sync
This commit is contained in:
parent
09fc7f8fa9
commit
a90a5df672
2 changed files with 36 additions and 22 deletions
|
@ -1,6 +1,5 @@
|
|||
{-# OPTIONS --guardedness #-}
|
||||
open import Codata.Musical.Colist hiding (_++_)
|
||||
open import Codata.Musical.Colist.Bisimilarity
|
||||
-- open import Codata.Musical.Colist hiding (_++_)
|
||||
open import Codata.Musical.Notation
|
||||
open import Data.Nat
|
||||
open import Data.Nat.Show renaming (show to showℕ)
|
||||
|
@ -13,6 +12,18 @@ module reverse where
|
|||
now : A → Delay A
|
||||
later : ∞ (Delay A) → Delay A
|
||||
|
||||
run_for_steps : ∀ {A : Set} → Delay A → ℕ → Delay A
|
||||
run now x for n steps = now x
|
||||
run later x for zero steps = later x
|
||||
run later x for suc n steps = later (♯ (run ♭ x for n steps))
|
||||
|
||||
never : ∀ {A : Set} → Delay A
|
||||
never = later (♯ never)
|
||||
|
||||
data Colist (A : Set) : Set where
|
||||
[] : Colist A
|
||||
_∷_ : A → ∞ (Colist A) → Colist A
|
||||
|
||||
reverse : ∀ {A : Set} → Colist A → Delay (Colist A)
|
||||
reverse {A} = reverseAcc []
|
||||
where
|
||||
|
@ -20,12 +31,6 @@ module reverse where
|
|||
reverseAcc [] a = now a
|
||||
reverseAcc (x ∷ xs) a = later (♯ reverseAcc (♭ xs) (x ∷ (♯ a)))
|
||||
|
||||
run_for_steps : ∀ {A : Set} → Delay A → ℕ → Delay A
|
||||
run now x for n steps = now x
|
||||
run later x for zero steps = later x
|
||||
run later x for suc n steps = run ♭ x for n steps
|
||||
|
||||
|
||||
fin-colist : Colist ℕ
|
||||
fin-colist = 1 ∷ ♯ (2 ∷ ♯ (3 ∷ ♯ []))
|
||||
|
||||
|
|
|
@ -1,14 +1,20 @@
|
|||
\section{Partiality in Type Theory}
|
||||
|
||||
% TODO
|
||||
% - remove vskips and use begin{listing}
|
||||
% - add colist definition
|
||||
|
||||
\begin{frame}[t, fragile]{Partiality in Haskell}{}
|
||||
Haskell allows users to define arbitrary partial functions
|
||||
\begin{itemize}
|
||||
\item<1-> Haskell allows users to define arbitrary partial functions, some can be spotted easily by their definition:
|
||||
\vskip 1cm
|
||||
\begin{minted}{agda}
|
||||
\item<1-> Some can be spotted easily by their definition:
|
||||
\vskip 0.5cm
|
||||
\begin{minted}{haskell}
|
||||
head :: [a] -> a
|
||||
head [] = error "empty list"
|
||||
head (x:xs) = x
|
||||
\end{minted}
|
||||
\mycallout<2->{21, 1.5}{
|
||||
\mycallout<2->{22, 1.5}{
|
||||
ghci> head []\\
|
||||
*** Exception: empty list\\
|
||||
CallStack (from HasCallStack):\\
|
||||
|
@ -16,16 +22,16 @@ head (x:xs) = x
|
|||
}
|
||||
\item<3->
|
||||
others might be more subtle:
|
||||
\vskip 1cm
|
||||
\begin{minted}{agda}
|
||||
\vskip 0.5cm
|
||||
\begin{minted}{haskell}
|
||||
reverse :: [a] -> [a]
|
||||
reverse l = reverseAcc l []
|
||||
reverse l = revAcc l []
|
||||
where
|
||||
reverseAcc [] a = a
|
||||
reverseAcc (x:xs) a = reverseAcc xs (x:a)
|
||||
revAcc [] a = a
|
||||
revAcc (x:xs) a = revAcc xs (x:a)
|
||||
\end{minted}
|
||||
|
||||
\mycallout<4->{21, 2}{
|
||||
\mycallout<4->{22, 2}{
|
||||
ghci> ones = 1 : ones\\
|
||||
ghci> reverse ones\\
|
||||
...
|
||||
|
@ -39,13 +45,16 @@ In Agda every function has to be total and terminating, so how do we model parti
|
|||
|
||||
\begin{itemize}[<+->]
|
||||
\item Simple errors can be modelled with the maybe monad
|
||||
\begin{listing}[H]
|
||||
\begin{minted}{agda}
|
||||
data Maybe (A : Set) : Set where
|
||||
just : A → Maybe A
|
||||
nothing : Maybe A
|
||||
\end{minted}
|
||||
\end{listing}
|
||||
|
||||
for head we can then do:
|
||||
\vskip 0.5cm
|
||||
|
||||
\begin{minted}{agda}
|
||||
head : ∀ A → List A → Maybe A
|
||||
|
@ -85,10 +94,10 @@ run later x for suc n steps = run ♭ x for n steps
|
|||
\centering
|
||||
\begin{minted}{agda}
|
||||
reverse : ∀ {A : Set} → Colist A → Delay (Colist A)
|
||||
reverse {A} = reverseAcc []
|
||||
reverse {A} = revAcc []
|
||||
where
|
||||
reverseAcc : Colist A → Colist A → Delay (Colist A)
|
||||
reverseAcc [] a = now a
|
||||
reverseAcc (x ∷ xs) a = later (♯ reverseAcc (♭ xs) (x ∷ (♯ a)))
|
||||
revAcc : Colist A → Colist A → Delay (Colist A)
|
||||
revAcc [] a = now a
|
||||
revAcc (x ∷ xs) a = later (♯ revAcc (♭ xs) (x ∷ (♯ a)))
|
||||
\end{minted}
|
||||
\end{frame}
|
Loading…
Reference in a new issue