mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Work on maybe monad
This commit is contained in:
parent
fae9a310a4
commit
af3b6ee7c3
1 changed files with 104 additions and 18 deletions
|
@ -5,16 +5,24 @@
|
|||
open import Level
|
||||
open import Category.Instance.AmbientCategory
|
||||
open import Categories.Category
|
||||
open import Categories.Category.Instance.Setoids
|
||||
open import Categories.Category.Instance.Setoids renaming (Setoids to Setoids')
|
||||
open import Categories.Monad
|
||||
open import Categories.Category.Monoidal.Instance.Setoids
|
||||
open import Categories.Category.Cocartesian
|
||||
open import Categories.Object.Terminal
|
||||
open import Function.Equality as SΠ renaming (id to ⟶-id)
|
||||
import Categories.Morphism.Reasoning as MR
|
||||
open import Relation.Binary
|
||||
open import Relation.Binary renaming (Setoid to Setoid')
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Data.Sum.Function.Setoid
|
||||
open import Data.Sum.Relation.Binary.Pointwise
|
||||
open import Agda.Builtin.Unit using (tt)
|
||||
|
||||
open import Data.Unit.Polymorphic using () renaming (⊤ to ⊤ₚ)
|
||||
open import Data.Empty.Polymorphic using () renaming (⊥ to ⊥ₚ)
|
||||
open import Categories.NaturalTransformation using (ntHelper)
|
||||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open import Function.Base using (id)
|
||||
open Eq using (_≡_) renaming (refl to refl-≡; sym to sym-≡; trans to trans-≡) -- refl; cong; sym)
|
||||
```
|
||||
-->
|
||||
|
||||
|
@ -28,26 +36,104 @@ Assuming the axiom of choice, the maybe monad is an instance of K in the categor
|
|||
|
||||
```agda
|
||||
module _ {c ℓ' : Level} where
|
||||
open Cocartesian (Setoids-Cocartesian {c} {c ⊔ ℓ'})
|
||||
-- redefine Setoid and Setoids without universe levels for convenience
|
||||
private
|
||||
Setoid = Setoid' c (c ⊔ ℓ')
|
||||
Setoids = Setoids' c (c ⊔ ℓ')
|
||||
-- open Cocartesian (Setoids-Cocartesian {c} {c ⊔ ℓ'})
|
||||
open Terminal (terminal {c} {c ⊔ ℓ'})
|
||||
open MR (Setoids c (c ⊔ ℓ'))
|
||||
open Category (Setoids c (c ⊔ ℓ'))
|
||||
open MR Setoids
|
||||
open Category Setoids hiding (_∘_; _⇒_; id)
|
||||
-- open HomReasoning
|
||||
open Equiv
|
||||
-- open Setoid
|
||||
|
||||
private
|
||||
variable
|
||||
a : Level
|
||||
|
||||
data Maybe (A : Set a) : Set a where
|
||||
nothing : Maybe A
|
||||
just : A → Maybe A
|
||||
|
||||
maybeSetoid : ∀ (A : Set a) → Setoid' a a
|
||||
maybeSetoid A = record { Carrier = Maybe A ; _≈_ = eq ; isEquivalence = record { refl = refl' ; sym = sym' ; trans = trans' } }
|
||||
where
|
||||
eq : Maybe A → Maybe A → Set a
|
||||
eq nothing nothing = ⊤ₚ
|
||||
eq nothing (just y) = ⊥ₚ
|
||||
eq (just x) nothing = ⊥ₚ
|
||||
eq (just x) (just y) = x ≡ y
|
||||
refl' : Reflexive eq
|
||||
refl' {nothing} = lift tt
|
||||
refl' {just x} = refl-≡
|
||||
sym' : Symmetric eq
|
||||
sym' {nothing} {nothing} = id
|
||||
sym' {nothing} {just y} = id
|
||||
sym' {just x} {nothing} = id
|
||||
sym' {just x} {just y} = sym-≡
|
||||
trans' : Transitive eq
|
||||
trans' {nothing} {nothing} {nothing} = λ _ → id
|
||||
trans' {nothing} {nothing} {just z} = λ _ → id
|
||||
trans' {nothing} {just y} {nothing} = λ _ _ → lift tt
|
||||
trans' {nothing} {just y} {just z} = λ ()
|
||||
trans' {just x} {nothing} {nothing} = λ ()
|
||||
trans' {just x} {nothing} {just z} = λ ()
|
||||
trans' {just x} {just y} {nothing} = λ _ → id
|
||||
trans' {just x} {just y} {just z} = trans-≡
|
||||
|
||||
maybe : Monad (Setoids c (c ⊔ ℓ'))
|
||||
-- maybe-η :
|
||||
|
||||
-- TODO this is completely wrong...
|
||||
maybe : Monad Setoids
|
||||
maybe = record
|
||||
{ F = record
|
||||
{ F₀ = λ X → X + ⊤
|
||||
; F₁ = λ {A} {B} f → f +₁ ⟶-id
|
||||
; identity = {! !}
|
||||
; homomorphism = {! !}
|
||||
; F-resp-≈ = λ {A} {B} {f} {g} f≈g → +₁-cong₂ f≈g ?
|
||||
{ F₀ = λ X → X ⊎ₛ ⊤
|
||||
; F₁ = λ {A} {B} f → f ⊎-⟶ ⟶-id
|
||||
; identity = λ {A} → id+id {A}
|
||||
; homomorphism = λ {A} {B} {C} {f} {g} → homomorphism' {f = f} {g = g}
|
||||
; F-resp-≈ = λ {A} {B} {f} {g} f≈g → F-resp-≈' f g f≈g
|
||||
}
|
||||
; η = {! !}
|
||||
; μ = {! !}
|
||||
; assoc = {! !}
|
||||
; sym-assoc = {! !}
|
||||
; identityˡ = {! !}
|
||||
; identityʳ = {! !}
|
||||
; η = ntHelper (record
|
||||
{ η = λ X → inj₁ₛ
|
||||
; commute = η-commute
|
||||
})
|
||||
; μ = ntHelper (record
|
||||
{ η = λ X → mult
|
||||
; commute = λ {X} {Y} f → μ-commute f
|
||||
})
|
||||
; assoc = assoc'
|
||||
; sym-assoc = sym-assoc'
|
||||
; identityˡ = identityˡ'
|
||||
; identityʳ = λ {X} → identityʳ' {X}
|
||||
}
|
||||
where
|
||||
id+id : ∀ {A B : Setoid} → ⟶-id {A = A} ⊎-⟶ ⟶-id {A = B} ≈ ⟶-id
|
||||
id+id (inj₁ x) = inj₁ x
|
||||
id+id (inj₂ x) = inj₂ x
|
||||
F-resp-≈' : ∀ {A B : Setoid} (f g : A ⟶ B) → f ≈ g → f ⊎-⟶ ⟶-id {A = ⊤} ≈ g ⊎-⟶ ⟶-id
|
||||
F-resp-≈' {A} {B} f g f≈g (inj₁ x) = inj₁ (f≈g x)
|
||||
F-resp-≈' {A} {B} f g f≈g (inj₂ x) = inj₂ x
|
||||
homomorphism' : ∀ {A B C : Setoid } {f : A ⟶ B} {g : B ⟶ C} → (g ∘ f) ⊎-⟶ ⟶-id {A = ⊤} ≈ g ⊎-⟶ ⟶-id ∘ f ⊎-⟶ ⟶-id
|
||||
homomorphism' {A} {B} {C} {f} {g} (inj₁ x) = inj₁ (refl {A} {C} {g ∘ f} x)
|
||||
homomorphism' {A} {B} {C} {f} {g} (inj₂ x) = inj₂ x
|
||||
η-commute : ∀ {A B : Setoid} (f : A ⟶ B) → f ⊎-⟶ ⟶-id ∘ inj₁ₛ {B = ⊤} ≈ inj₁ₛ ∘ f
|
||||
η-commute {A} {B} f x = inj₁ (refl {A} {B} {f} x)
|
||||
mult : ∀ {A B : Setoid} → (A ⊎ₛ B) ⊎ₛ B ⟶ A ⊎ₛ B
|
||||
mult {A} {B} = record { _⟨$⟩_ = λ { (inj₁ x) → x ; (inj₂ x) → inj₂ x } ; cong = λ { (inj₁ x) → x ; (inj₂ x) → inj₂ x } }
|
||||
μ-commute : ∀ {A B : Setoid} (f : A ⟶ B) → mult {B} {⊤} ∘ (f ⊎-⟶ ⟶-id) ⊎-⟶ ⟶-id ≈ f ⊎-⟶ ⟶-id {A = ⊤} ∘ mult
|
||||
μ-commute {A} {B} f (inj₁ x) = refl {A ⊎ₛ ⊤} {B ⊎ₛ ⊤} {f ⊎-⟶ ⟶-id} x
|
||||
μ-commute {A} {B} f (inj₂ x) = inj₂ x
|
||||
assoc' : ∀ {A : Setoid} → mult {A = A} {B = ⊤} ∘ (mult ⊎-⟶ ⟶-id) ≈ mult ∘ mult
|
||||
assoc' {A} (inj₁ x) = refl {(A ⊎ₛ ⊤) ⊎ₛ ⊤} {A ⊎ₛ ⊤} {mult} x
|
||||
assoc' {A} (inj₂ x) = inj₂ x
|
||||
sym-assoc' : ∀ {A : Setoid} → mult ∘ mult ≈ mult {A = A} {B = ⊤} ∘ (mult ⊎-⟶ ⟶-id)
|
||||
sym-assoc' {A} (inj₁ x) = refl {(A ⊎ₛ ⊤) ⊎ₛ ⊤} {A ⊎ₛ ⊤} {mult} x
|
||||
sym-assoc' {A} (inj₂ x) = inj₂ x
|
||||
identityˡ' : ∀ {A : Setoid} → mult {A = A} {B = ⊤} ∘ inj₁ₛ ⊎-⟶ ⟶-id ≈ ⟶-id
|
||||
identityˡ' {A} (inj₁ x) = inj₁ x
|
||||
identityˡ' {A} (inj₂ x) = inj₂ x
|
||||
identityʳ' : ∀ {A : Setoid} → mult {A = A} {B = ⊤} ∘ inj₁ₛ ≈ ⟶-id
|
||||
identityʳ' {A} (inj₁ x) = inj₁ x
|
||||
identityʳ' {A} (inj₂ x) = inj₂ x
|
||||
```
|
Loading…
Reference in a new issue