Work on maybe monad

This commit is contained in:
Leon Vatthauer 2023-11-30 13:16:10 +01:00
parent fae9a310a4
commit af3b6ee7c3
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -5,16 +5,24 @@
open import Level
open import Category.Instance.AmbientCategory
open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Category.Instance.Setoids renaming (Setoids to Setoids')
open import Categories.Monad
open import Categories.Category.Monoidal.Instance.Setoids
open import Categories.Category.Cocartesian
open import Categories.Object.Terminal
open import Function.Equality as SΠ renaming (id to ⟶-id)
import Categories.Morphism.Reasoning as MR
open import Relation.Binary
open import Relation.Binary renaming (Setoid to Setoid')
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Sum.Function.Setoid
open import Data.Sum.Relation.Binary.Pointwise
open import Agda.Builtin.Unit using (tt)
open import Data.Unit.Polymorphic using () renaming ( to ⊤ₚ)
open import Data.Empty.Polymorphic using () renaming (⊥ to ⊥ₚ)
open import Categories.NaturalTransformation using (ntHelper)
import Relation.Binary.PropositionalEquality as Eq
open import Function.Base using (id)
open Eq using (_≡_) renaming (refl to refl-≡; sym to sym-≡; trans to trans-≡) -- refl; cong; sym)
```
-->
@ -28,26 +36,104 @@ Assuming the axiom of choice, the maybe monad is an instance of K in the categor
```agda
module _ {c ' : Level} where
open Cocartesian (Setoids-Cocartesian {c} {c ⊔ '})
-- redefine Setoid and Setoids without universe levels for convenience
private
Setoid = Setoid' c (c ⊔ ')
Setoids = Setoids' c (c ⊔ ')
-- open Cocartesian (Setoids-Cocartesian {c} {c ⊔ '})
open Terminal (terminal {c} {c ⊔ '})
open MR (Setoids c (c ⊔ '))
open Category (Setoids c (c ⊔ '))
open MR Setoids
open Category Setoids hiding (_∘_; _⇒_; id)
-- open HomReasoning
open Equiv
-- open Setoid
private
variable
a : Level
data Maybe (A : Set a) : Set a where
nothing : Maybe A
just : A → Maybe A
maybeSetoid : ∀ (A : Set a) → Setoid' a a
maybeSetoid A = record { Carrier = Maybe A ; _≈_ = eq ; isEquivalence = record { refl = refl' ; sym = sym' ; trans = trans' } }
where
eq : Maybe A → Maybe A → Set a
eq nothing nothing = ⊤ₚ
eq nothing (just y) = ⊥ₚ
eq (just x) nothing = ⊥ₚ
eq (just x) (just y) = x ≡ y
refl' : Reflexive eq
refl' {nothing} = lift tt
refl' {just x} = refl-≡
sym' : Symmetric eq
sym' {nothing} {nothing} = id
sym' {nothing} {just y} = id
sym' {just x} {nothing} = id
sym' {just x} {just y} = sym-≡
trans' : Transitive eq
trans' {nothing} {nothing} {nothing} = λ _ → id
trans' {nothing} {nothing} {just z} = λ _ → id
trans' {nothing} {just y} {nothing} = λ _ _ → lift tt
trans' {nothing} {just y} {just z} = λ ()
trans' {just x} {nothing} {nothing} = λ ()
trans' {just x} {nothing} {just z} = λ ()
trans' {just x} {just y} {nothing} = λ _ → id
trans' {just x} {just y} {just z} = trans-≡
maybe : Monad (Setoids c (c ⊔ '))
-- maybe-η :
-- TODO this is completely wrong...
maybe : Monad Setoids
maybe = record
{ F = record
{ F₀ = λ X → X +
; F₁ = λ {A} {B} f → f +₁ ⟶-id
; identity = {! !}
; homomorphism = {! !}
; F-resp-≈ = λ {A} {B} {f} {g} f≈g → +₁-cong₂ f≈g ?
{ F₀ = λ X → X ⊎ₛ
; F₁ = λ {A} {B} f → f ⊎-⟶ ⟶-id
; identity = λ {A} → id+id {A}
; homomorphism = λ {A} {B} {C} {f} {g} → homomorphism' {f = f} {g = g}
; F-resp-≈ = λ {A} {B} {f} {g} f≈g → F-resp-≈' f g f≈g
}
; η = {! !}
; μ = {! !}
; assoc = {! !}
; sym-assoc = {! !}
; identityˡ = {! !}
; identityʳ = {! !}
; η = ntHelper (record
{ η = λ X → inj₁ₛ
; commute = η-commute
})
; μ = ntHelper (record
{ η = λ X → mult
; commute = λ {X} {Y} f → μ-commute f
})
; assoc = assoc'
; sym-assoc = sym-assoc'
; identityˡ = identityˡ'
; identityʳ = λ {X} → identityʳ' {X}
}
where
id+id : ∀ {A B : Setoid} → ⟶-id {A = A} ⊎-⟶ ⟶-id {A = B} ≈ ⟶-id
id+id (inj₁ x) = inj₁ x
id+id (inj₂ x) = inj₂ x
F-resp-≈' : ∀ {A B : Setoid} (f g : A ⟶ B) → f ≈ g → f ⊎-⟶ ⟶-id {A = } ≈ g ⊎-⟶ ⟶-id
F-resp-≈' {A} {B} f g f≈g (inj₁ x) = inj₁ (f≈g x)
F-resp-≈' {A} {B} f g f≈g (inj₂ x) = inj₂ x
homomorphism' : ∀ {A B C : Setoid } {f : A ⟶ B} {g : B ⟶ C} → (g ∘ f) ⊎-⟶ ⟶-id {A = } ≈ g ⊎-⟶ ⟶-id ∘ f ⊎-⟶ ⟶-id
homomorphism' {A} {B} {C} {f} {g} (inj₁ x) = inj₁ (refl {A} {C} {g ∘ f} x)
homomorphism' {A} {B} {C} {f} {g} (inj₂ x) = inj₂ x
η-commute : ∀ {A B : Setoid} (f : A ⟶ B) → f ⊎-⟶ ⟶-id ∘ inj₁ₛ {B = } ≈ inj₁ₛ ∘ f
η-commute {A} {B} f x = inj₁ (refl {A} {B} {f} x)
mult : ∀ {A B : Setoid} → (A ⊎ₛ B) ⊎ₛ B ⟶ A ⊎ₛ B
mult {A} {B} = record { _⟨$⟩_ = λ { (inj₁ x) → x ; (inj₂ x) → inj₂ x } ; cong = λ { (inj₁ x) → x ; (inj₂ x) → inj₂ x } }
μ-commute : ∀ {A B : Setoid} (f : A ⟶ B) → mult {B} {} ∘ (f ⊎-⟶ ⟶-id) ⊎-⟶ ⟶-id ≈ f ⊎-⟶ ⟶-id {A = } ∘ mult
μ-commute {A} {B} f (inj₁ x) = refl {A ⊎ₛ } {B ⊎ₛ } {f ⊎-⟶ ⟶-id} x
μ-commute {A} {B} f (inj₂ x) = inj₂ x
assoc' : ∀ {A : Setoid} → mult {A = A} {B = } ∘ (mult ⊎-⟶ ⟶-id) ≈ mult ∘ mult
assoc' {A} (inj₁ x) = refl {(A ⊎ₛ ) ⊎ₛ } {A ⊎ₛ } {mult} x
assoc' {A} (inj₂ x) = inj₂ x
sym-assoc' : ∀ {A : Setoid} → mult ∘ mult ≈ mult {A = A} {B = } ∘ (mult ⊎-⟶ ⟶-id)
sym-assoc' {A} (inj₁ x) = refl {(A ⊎ₛ ) ⊎ₛ } {A ⊎ₛ } {mult} x
sym-assoc' {A} (inj₂ x) = inj₂ x
identityˡ' : ∀ {A : Setoid} → mult {A = A} {B = } ∘ inj₁ₛ ⊎-⟶ ⟶-id ≈ ⟶-id
identityˡ' {A} (inj₁ x) = inj₁ x
identityˡ' {A} (inj₂ x) = inj₂ x
identityʳ' : ∀ {A : Setoid} → mult {A = A} {B = } ∘ inj₁ₛ ≈ ⟶-id
identityʳ' {A} (inj₁ x) = inj₁ x
identityʳ' {A} (inj₂ x) = inj₂ x
```