stuck on final proof for stability

This commit is contained in:
Leon Vatthauer 2024-02-02 17:59:59 +01:00
parent 75e61fcc33
commit b31d3e2540
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 89 additions and 25 deletions

View file

@ -26,10 +26,11 @@ module Algebra.Elgot.Properties {o e} {C : Category o e} (distributive :
open Category C
open HomReasoning
open Equiv
open MR C
open Distributive distributive
open import Categories.Category.Distributive.Properties distributive
open Cartesian cartesian
open BinaryProducts products
open BinaryProducts products hiding (η) renaming (unique to ⟨⟩-unique)
open Cocartesian cocartesian
ccc : CartesianClosed C
ccc = record { cartesian = cartesian ; exp = expos }
@ -39,19 +40,43 @@ module Algebra.Elgot.Properties {o e} {C : Category o e} (distributive :
open import Category.Construction.ElgotAlgebras {C = C}
open Cat cocartesian
open Exponentials distributive expos
open import Algebra.Elgot cocartesian
open import Algebra.Elgot.Free cocartesian
open import Algebra.Elgot.Stable distributive
open CartesianClosed Elgot-CCC using () renaming (λg to λg#; _^_ to _^#_)
open Elgot-Algebra-Morphism renaming (h to <_>)
stable : ∀ {Y} (fe : FreeElgotAlgebra Y) → IsStableFreeElgotAlgebraˡ fe
IsStableFreeElgotAlgebraˡ.[_,_]♯ˡ (stable {Y} fe) {X} A f = (eval ∘ (Elgot-Algebra-Morphism.h ((fe FreeObject.*) {A = B^A-Helper {A} {X}} (λg f)) ⁂ id))
IsStableFreeElgotAlgebraˡ.[_,_]♯ˡ (stable {Y} fe) {X} A f = (eval ∘ (< FreeObject._* fe {B^A-Helper {A} {X}} (λg f) > ⁂ id))
where open FreeObject fe
IsStableFreeElgotAlgebraˡ.♯ˡ-law (stable {Y} fe) {X} {A} f = sym (begin
{! [ stable fe , A ]♯ˡ f ∘ (η fe ⁂ id) !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
f ∎)
IsStableFreeElgotAlgebraˡ.♯ˡ-preserving (stable {Y} fe) {X} {B} f {Z} h = {! !}
IsStableFreeElgotAlgebraˡ.♯ˡ-unique (stable {Y} fe) {X} {B} f g eq₁ eq₂ = {! !}
(eval ∘ (< (λg f)* > ⁂ id)) ∘ (η ⁂ id) ≈⟨ pullʳ ⁂∘⁂ ⟩
eval ∘ ((< (λg f)* > ∘ η) ⁂ id ∘ id) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (*-lift (λg f)) identity²) ⟩
eval ∘ (λg f ⁂ id) ≈⟨ β′ ⟩
f ∎)
where open FreeObject fe
IsStableFreeElgotAlgebraˡ.♯ˡ-preserving (stable {Y} fe) {X} {B} f {Z} h = begin
(eval ∘ (< (λg f)* > ⁂ id)) ∘ (h ⁂ id) ≈⟨ pullʳ ⁂∘⁂ ⟩
eval ∘ (< (λg f)* > ∘ h ⁂ id ∘ id) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (preserves ((λg f)*)) identity²) ⟩
eval ∘ (λg (((eval +₁ id) ∘ distributeʳ⁻¹ ∘ ((< (λg f)* > +₁ id) ∘ h ⁂ id)) #ᵇ) ⁂ id) ≈⟨ β′ ⟩
((eval +₁ id) ∘ distributeʳ⁻¹ ∘ ((< (λg f)* > +₁ id) ∘ h ⁂ id)) #ᵇ ≈˘⟨ #ᵇ-resp-≈ (refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²)) ⟩
((eval +₁ id) ∘ distributeʳ⁻¹ ∘ ((< (λg f)* > +₁ id) ⁂ id) ∘ (h ⁂ id)) #ᵇ ≈⟨ #ᵇ-resp-≈ (refl⟩∘⟨ pullˡ (sym (distributeʳ⁻¹-natural id < (λg f) * > id))) ⟩
((eval +₁ id) ∘ ((< (λg f)* > ⁂ id +₁ id ⁂ id) ∘ distributeʳ⁻¹) ∘ (h ⁂ id)) #ᵇ ≈⟨ #ᵇ-resp-≈ (refl⟩∘⟨ assoc ○ pullˡ (+₁∘+₁ ○ +₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm)))) ⟩
((eval ∘ (< (λg f)* > ⁂ id) +₁ id) ∘ distributeʳ⁻¹ ∘ (h ⁂ id)) #ᵇ
where
open FreeObject fe renaming (FX to KY)
open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra KY using () renaming (_# to _#ʸ)
IsStableFreeElgotAlgebraˡ.♯ˡ-unique (stable {Y} fe) {X} {B} f g eq₁ eq₂ = sym (begin
eval ∘ (< (λg f)* > ⁂ id) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (*-cong (λ-cong eq₁)) refl) ⟩
eval ∘ (< (λg (g ∘ (η ⁂ id)))* > ⁂ id) ≈˘⟨ refl⟩∘⟨ (⁂-cong₂ (*-cong subst) refl) ⟩
eval ∘ (< (λg g ∘ η)* > ⁂ id) ≈˘⟨ refl⟩∘⟨ (⁂-cong₂ (*-uniq (λg g ∘ η) (record { h = λg g ; preserves = {! !} }) refl) refl) ⟩
eval ∘ (λg g ⁂ id) ≈⟨ β′ ⟩
g ∎)
where
open FreeObject fe renaming (FX to KY)
open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra KY using () renaming (_# to _#ʸ)
```

View file

@ -314,7 +314,7 @@ module Category.Construction.ElgotAlgebras {o e} {C : Category o e} wher
[ (id +₁ i₁) ∘ (eval +₁ id) ∘ distributeʳ⁻¹ ∘ (f ⁂ id) , i₂ ∘ distributeʳ⁻¹ ∘ (h ⁂ id) ] ≈˘⟨ cancelʳ (IsIso.isoˡ isIsoʳ) ⟩
([ (id +₁ i₁) ∘ (eval +₁ id) ∘ distributeʳ⁻¹ ∘ (f ⁂ id) , i₂ ∘ distributeʳ⁻¹ ∘ (h ⁂ id) ] ∘ distributeʳ⁻¹) ∘ distributeʳ ∎)
<_> = Elgot-Algebra-Morphism.h
open Elgot-Algebra-Morphism renaming (h to <_>)
cccc : CanonicalCartesianClosed Elgot-Algebras
CanonicalCartesianClosed. cccc = Terminal. Terminal-Elgot-Algebras
@ -366,21 +366,60 @@ module Category.Construction.ElgotAlgebras {o e} {C : Category o e} wher
(eval +₁ id) ∘ (i₂ ∘ (id ⁂ id)) ∘ ⟨ id , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ f) ⟩ ≈⟨ pullˡ (pullˡ inject₂) ⟩
((i₂ ∘ id) ∘ (id ⁂ id)) ∘ ⟨ id , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ f) ⟩ ≈⟨ (cancelʳ (identityˡ ○ ⟨⟩-unique id-comm id-comm)) ⟩∘⟨refl ⟩
i₂ ∘ ⟨ id , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ f) ⟩ ∎
Elgot-Algebra-Morphism.h (CanonicalCartesianClosed.curry cccc {A} {B} {C} f) = λg < f >
Elgot-Algebra-Morphism.preserves (CanonicalCartesianClosed.curry cccc {A} {B} {C} f) {X} {g} = λ-unique (begin
eval ∘ ((λg < f > ∘ (Elgot-Algebra._# A) g) ⁂ id) ≈⟨ refl⟩∘⟨ ⁂-cong₂ subst refl ⟩
eval ∘ ((λg (< f > ∘ (((Elgot-Algebra._# A) g) ⁂ id))) ⁂ id) ≈⟨ β′ ⟩
< f > ∘ (((Elgot-Algebra._# A) g) ⁂ id) ≈⟨ {! !} ⟩
< CanonicalCartesianClosed.curry cccc {A} {B} {C} f > = λg < f >
preserves (CanonicalCartesianClosed.curry cccc {A} {B} {C} f) {X} {g} = begin
λg < f > ∘ g #ᵃ ≈⟨ subst ⟩
λg (< f > ∘ (g #ᵃ ⁂ id)) ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
< f > ∘ ⟨ [ id , (Elgot-Algebra._# A) ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ] ∘ ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) , [ id , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ] ∘ ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ⟩ ≈˘⟨ refl⟩∘⟨ (⟨⟩-cong₂ (Elgot-Algebra.#-Fixpoint A) (Elgot-Algebra.#-Fixpoint B)) ⟩
< f > ∘ ⟨ (Elgot-Algebra._# A) ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ⟩ ≈⟨ Elgot-Algebra-Morphism.preserves f ⟩
(Elgot-Algebra._# C) ((< f > +₁ id) ∘ distributeʳ⁻¹ ∘ (g ⁂ id)) ≈˘⟨ {! !} ⟩
(Elgot-Algebra._# C) ((eval +₁ id) ∘ (((λg < f > ⁂ id) +₁ (id ⁂ id)) ∘ distributeʳ⁻¹) ∘ (g ⁂ id)) ≈˘⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (pullˡ (sym (distributeʳ⁻¹-natural id (λg < f >) id)))) ⟩
(Elgot-Algebra._# C) ((eval +₁ id) ∘ distributeʳ⁻¹ ∘ ((λg < f > +₁ id) ⁂ id) ∘ (g ⁂ id)) ≈⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²))) ⟩
(Elgot-Algebra._# C) ((eval +₁ id) ∘ distributeʳ⁻¹ ∘ (((λg < f > +₁ id) ∘ g) ⁂ id)) ∎)
{! !} ≈⟨ {! !} ⟩
λg (< f > ∘ ⟨ ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵃ , ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵇ ⟩) ≈⟨ λ-cong (preserves f) ⟩
λg (((< f > +₁ id) ∘ distributeʳ⁻¹ ∘ (g ⁂ id)) #ᶜ) ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
λg (((eval +₁ id) ∘ distributeʳ⁻¹ ∘ (((λg < f > +₁ id) ∘ g) ⁂ id)) #ᶜ) ∎
where
open Elgot-Algebra A using () renaming (_# to _#ᵃ; #-Uniformity to #ᵃ-Uniformity)
open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
open Elgot-Algebra C using () renaming (_# to _#ᶜ; #-resp-≈ to #ᶜ-resp-≈)
-- Elgot-Algebra-Morphism.preserves (CanonicalCartesianClosed.curry cccc {A} {B} {C} f) {X} {g} = λ-unique (begin
-- eval ∘ ((λg < f > ∘ g #ᵃ) ⁂ id) ≈⟨ refl⟩∘⟨ ⁂-cong₂ subst refl ⟩
-- eval ∘ ((λg (< f > ∘ (g #ᵃ ⁂ id))) ⁂ id) ≈⟨ β′ ⟩
-- < f > ∘ (g #ᵃ ⁂ id) ≈⟨ refl⟩∘⟨ (⟨⟩-unique by-π₁ by-π₂) ⟩
-- < f > ∘ ⟨ ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵃ , ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵇ ⟩ ≈⟨ Elgot-Algebra-Morphism.preserves f ⟩
-- ((< f > +₁ id) ∘ distributeʳ⁻¹ ∘ (g ⁂ id)) #ᶜ ≈˘⟨ #ᶜ-resp-≈ (refl⟩∘⟨ assoc ○ pullˡ (+₁∘+₁ ○ +₁-cong₂ β′ (elimʳ (⟨⟩-unique id-comm id-comm)))) ⟩
-- ((eval +₁ id) ∘ (((λg < f > ⁂ id) +₁ (id ⁂ id)) ∘ distributeʳ⁻¹) ∘ (g ⁂ id)) #ᶜ ≈˘⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (pullˡ (sym (distributeʳ⁻¹-natural id (λg < f >) id)))) ⟩
-- ((eval +₁ id) ∘ distributeʳ⁻¹ ∘ ((λg < f > +₁ id) ⁂ id) ∘ (g ⁂ id)) #ᶜ ≈⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²))) ⟩
-- ((eval +₁ id) ∘ distributeʳ⁻¹ ∘ (((λg < f > +₁ id) ∘ g) ⁂ id)) #ᶜ ∎)
-- where
-- open Elgot-Algebra A using () renaming (_# to _#ᵃ; #-Uniformity to #ᵃ-Uniformity)
-- open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
-- open Elgot-Algebra C using () renaming (_# to _#ᶜ; #-resp-≈ to #ᶜ-resp-≈)
-- by-π₁ : π₁ ∘ ⟨ ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵃ , ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵇ ⟩ ≈ g #ᵃ ∘ π₁
-- by-π₁ = project₁ ○ #ᵃ-Uniformity by-uni
-- where
-- by-uni : (id +₁ π₁) ∘ (π₁ +₁ id) ∘ distributeʳ⁻¹ ∘ (g ⁂ id) ≈ g ∘ π₁
-- by-uni = begin
-- (id +₁ π₁) ∘ (π₁ +₁ id) ∘ distributeʳ⁻¹ ∘ (g ⁂ id) ≈⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ identityʳ) ⟩
-- (π₁ +₁ π₁) ∘ distributeʳ⁻¹ ∘ (g ⁂ id) ≈⟨ pullˡ distributeʳ⁻¹-π₁ ⟩
-- π₁ ∘ (g ⁂ id) ≈⟨ project₁ ⟩
-- g ∘ π₁ ∎
-- by-π₂ : π₂ ∘ ⟨ ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵃ , ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵇ ⟩ ≈ id ∘ π₂
-- by-π₂ = begin
-- π₂ ∘ ⟨ ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵃ , ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵇ ⟩ ≈⟨ project₂ ⟩
-- ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)))#ᵇ ≈⟨ #ᵇ-Uniformity by-uni ⟩
-- {! !} #ᵇ ∘ π₂ ≈⟨ {! !} ⟩
-- {! !} ≈⟨ {! !} ⟩
-- {! !} ≈⟨ {! !} ⟩
-- {! !} ≈⟨ {! !} ⟩
-- id ∘ π₂ ∎
-- where
-- by-uni : (id +₁ π₂) ∘ (π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id)) ≈ {! !} ∘ π₂
-- by-uni = begin
-- {! !} ≈⟨ {! !} ⟩
-- {! !} ≈⟨ {! !} ⟩
-- {! !} ≈⟨ {! !} ⟩
-- {! !} ≈⟨ {! !} ⟩
-- {! !} ∎
CanonicalCartesianClosed.eval-comp cccc {A} {B} {C} {f} = β′
CanonicalCartesianClosed.curry-unique cccc {A} {B} {C} {f} {g} eq = λ-unique eq