diff --git a/src/Algebra/Elgot.lagda.md b/src/Algebra/Elgot.lagda.md index 7eeb2da..a7c9ed5 100644 --- a/src/Algebra/Elgot.lagda.md +++ b/src/Algebra/Elgot.lagda.md @@ -112,6 +112,8 @@ Here we give a different Characterization and show that it is equal. ⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂ ∎ + -- TODO Proposition 41 + -- every elgot-algebra comes with a divergence constant !ₑ : ⊥ ⇒ A !ₑ = i₂ # diff --git a/src/Monad/Instance/K/Commutative.lagda.md b/src/Monad/Instance/K/Commutative.lagda.md index 3534f58..687a8b1 100644 --- a/src/Monad/Instance/K/Commutative.lagda.md +++ b/src/Monad/Instance/K/Commutative.lagda.md @@ -164,6 +164,12 @@ KCommutative = record { commutes = commutes' } where ψ : ∀ {X Y} → K.₀ X × K.₀ Y ⇒ K.₀ (X × Y) ψ = extend (τ _) ∘ σ _ + ψ-left-iter : ∀ {X Y U} (h : X ⇒ K.₀ Y + X) → ψ {Y} {U} ∘ (h # ⁂ idC) ≈ ((ψ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) # + ψ-left-iter {X} {Y} {U} h = begin + ψ ∘ (h # ⁂ idC) ≈⟨ pullʳ (σ-comm h) ⟩ + extend (τ _) ∘ ((σ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC))# ≈⟨ extend-preserve (τ (Y , U)) (((σ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC))) ⟩ + ((extend (τ _) +₁ idC) ∘ (σ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC))# ≈⟨ #-resp-≈ (algebras (Y × U)) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩ + (((ψ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #) ∎ comm₅ : (ψ ∘ (idC ⁂ (h #))) ∘ (η _ ⁂ idC) ≈ τ _ ∘ (idC ⁂ h #) comm₅ = begin (ψ ∘ (idC ⁂ (h #))) ∘ (η _ ⁂ idC) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ id-comm-sym id-comm) ⟩ @@ -204,25 +210,19 @@ KCommutative = record { commutes = commutes' } (idC +₁ (idC ⁂ h #)) ∘ ((ψ ∘ (idC ⁂ h #)) +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) ∎ comm₈ : ∀ {U} (g : U ⇒ K.₀ X + U) → ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∘ (g # ⁂ idC) ≈ ((((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC))# comm₈ {U} g = begin - ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ (g # ⁂ idC) ≈⟨ {!!} ⟩ -- Uniformity - ((((ψ +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC)) # +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ {! !} ⟩ - ( [ (idC +₁ i₁) ∘ (ψ +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) , i₂ ∘ i₂ ] ∘ [ i₁ , distributeˡ⁻¹ ∘ (idC ⁂ h) ]) # ∘ i₂ ≈⟨ {!!} ⟩ - ([ (ψ +₁ i₁) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) , i₂ ∘ i₂ ] ∘ [ i₁ , distributeˡ⁻¹ ∘ (idC ⁂ h) ]) # ∘ i₂ ≈⟨ {!!} ⟩ - [ [ (ψ +₁ i₁) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) , i₂ ∘ i₂ ] ∘ i₁ , [ (ψ +₁ i₁) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) , i₂ ∘ i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ] # ∘ i₂ ≈⟨ {!!} ⟩ - [ (ψ +₁ i₁) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) , [ (ψ +₁ i₁) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) , i₂ ∘ i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ] # ∘ i₂ ≈⟨ {!!} ⟩ - ([ (ψ +₁ i₁) ∘ distributeʳ⁻¹ , [ (ψ +₁ i₁) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) , i₂ ∘ i₂ ] ∘ distributeˡ⁻¹ ] ∘ (g ⁂ idC +₁ idC ⁂ h)) # ∘ i₂ ≈⟨ {!!} ⟩ - {!!} ≈⟨ {!!} ⟩ - {!!} ≈⟨ {!!} ⟩ - {!!} ≈⟨ {!!} ⟩ - {!!} ≈⟨ {!!} ⟩ - {!!} ≈⟨ {!!} ⟩ - {!!} ≈⟨ {!!} ⟩ - ([((ψ +₁ i₁) ∘ distributeʳ⁻¹) , (i₂ ∘ i₂ ∘ distributeʳ⁻¹) ] ∘ distributeˡ⁻¹ ∘ {!!}) # ∘ i₂ ∘ i₂ ≈⟨ {!!} ⟩ - {!!} ≈˘⟨ {!!} ⟩ - {!!} ≈˘⟨ {!!} ⟩ - {!!} ≈˘⟨ {!!} ⟩ - {!!} ≈˘⟨ {!!} ⟩ - ([ (idC +₁ i₁) ∘ (ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) , i₂ ∘ i₂ ] ∘ [ i₁ , distributeʳ⁻¹ ∘ (g ⁂ idC) ]) # ∘ i₂ ≈˘⟨ {! !} ⟩ + ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ (g # ⁂ idC) ≈⟨ sym (#-Uniformity (algebras (X × Y)) (sym by-uni)) ⟩ + ((ψ ∘ ((g #) ⁂ idC) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ (ψ-left-iter g) refl) ⟩∘⟨refl) ⟩ + (((((ψ +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC)) # +₁ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ {! !} ⟩ + {! !} ≈⟨ {! !} ⟩ + {! !} ≈⟨ {! !} ⟩ + {! !} ≈⟨ {! !} ⟩ ((((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC))# ∎ - + where + by-uni : ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ ((g #) ⁂ idC) ≈ (idC +₁ (g #) ⁂ idC) ∘ (ψ ∘ ((g #) ⁂ idC) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) + by-uni = begin + ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ ((g #) ⁂ idC) ≈⟨ pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ id-comm-sym id-comm ○ sym ⁂∘⁂)) ⟩ + (ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ ((g #) ⁂ idC) ∘ (idC ⁂ h) ≈⟨ {! !} ⟩ + (ψ +₁ idC) ∘ ((((g #) ⁂ idC) +₁ ((g #) ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h) ≈⟨ pullˡ (pullˡ (+₁∘+₁ ○ +₁-cong₂ (sym identityˡ) id-comm-sym ○ sym +₁∘+₁)) ⟩ + (((idC +₁ (g #) ⁂ idC) ∘ (ψ ∘ ((g #) ⁂ idC) +₁ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h) ≈⟨ assoc² ⟩ + (idC +₁ (g #) ⁂ idC) ∘ (ψ ∘ ((g #) ⁂ idC) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ∎ ```