From bd621f7009a30b67b500a7a55154d10c8192cd24 Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Wed, 16 Aug 2023 14:50:21 +0200 Subject: [PATCH] Removed temporary definitions, adjusted definitions --- Coproduct.agda | 47 ------------------- Distributive/Bundle.agda | 22 --------- Distributive/Core.agda | 57 ----------------------- ElgotAlgebra.agda | 7 +-- ElgotAlgebras.agda | 15 +++--- Extensive/Bundle.agda | 31 ------------- Extensive/Core.agda | 99 ---------------------------------------- 7 files changed, 11 insertions(+), 267 deletions(-) delete mode 100644 Coproduct.agda delete mode 100644 Distributive/Bundle.agda delete mode 100644 Distributive/Core.agda delete mode 100644 Extensive/Bundle.agda delete mode 100644 Extensive/Core.agda diff --git a/Coproduct.agda b/Coproduct.agda deleted file mode 100644 index e5fe3e5..0000000 --- a/Coproduct.agda +++ /dev/null @@ -1,47 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Categories.Category hiding (_[_,_]) -open import Level -open import Function using (_$_) - -module Coproduct {o ℓ e} (𝒞 : Category o ℓ e) where - -open Category 𝒞 - -open import Categories.Morphism.Reasoning 𝒞 -open import Categories.Morphism 𝒞 - -open HomReasoning -open import Categories.Object.Coproduct - -private - variable - A B C D : Obj - f g h : A ⇒ B - -module _ {A B : Obj} where - open Coproduct {𝒞 = 𝒞} {A = A} {B = B} renaming ([_,_] to _[_,_]) - - repack : (p₁ p₂ : Coproduct 𝒞 A B) → A+B p₁ ⇒ A+B p₂ - repack p₁ p₂ = p₁ [ i₁ p₂ , i₂ p₂ ] - - repack∘ : (p₁ p₂ p₃ : Coproduct 𝒞 A B) → repack p₂ p₃ ∘ repack p₁ p₂ ≈ repack p₁ p₃ - repack∘ p₁ p₂ p₃ = ⟺ $ unique p₁ - (glueTrianglesˡ (inject₁ p₂) (inject₁ p₁)) - (glueTrianglesˡ (inject₂ p₂) (inject₂ p₁)) - - repack≡id : (p : Coproduct 𝒞 A B) → repack p p ≈ id - repack≡id = η - - repack-cancel : (p₁ p₂ : Coproduct 𝒞 A B) → repack p₁ p₂ ∘ repack p₂ p₁ ≈ id - repack-cancel p₁ p₂ = repack∘ p₂ p₁ p₂ ○ repack≡id p₂ - -up-to-iso : ∀ (p₁ p₂ : Coproduct 𝒞 A B) → Coproduct.A+B p₁ ≅ Coproduct.A+B p₂ -up-to-iso p₁ p₂ = record - { from = repack p₁ p₂ - ; to = repack p₂ p₁ - ; iso = record - { isoˡ = repack-cancel p₂ p₁ - ; isoʳ = repack-cancel p₁ p₂ - } - } \ No newline at end of file diff --git a/Distributive/Bundle.agda b/Distributive/Bundle.agda deleted file mode 100644 index 7521fd4..0000000 --- a/Distributive/Bundle.agda +++ /dev/null @@ -1,22 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Categories.Category -open import Categories.Category.Cartesian -open import Categories.Category.BinaryProducts -open import Categories.Category.Cocartesian -open import Distributive.Core using (Distributive) -import Categories.Morphism as M - -module Distributive.Bundle where - -open import Level - -record DistributiveCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where - field - U : Category o ℓ e - cartesian : Cartesian U - cocartesian : Cocartesian U - distributive : Distributive U cartesian cocartesian - - open Category U public - open Distributive distributive public \ No newline at end of file diff --git a/Distributive/Core.agda b/Distributive/Core.agda deleted file mode 100644 index 0deac8d..0000000 --- a/Distributive/Core.agda +++ /dev/null @@ -1,57 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Categories.Category -open import Categories.Category.Cartesian -open import Categories.Category.BinaryProducts -open import Categories.Category.Cocartesian -import Categories.Morphism as M -import Categories.Morphism.Reasoning as MR - -module Distributive.Core {o ℓ e} (𝒞 : Category o ℓ e) where - -open import Level -open Category 𝒞 -open M 𝒞 - -private - variable - A B C : Obj - -record Distributive (cartesian : Cartesian 𝒞) (cocartesian : Cocartesian 𝒞) : Set (levelOfTerm 𝒞) where - open Cartesian cartesian - open BinaryProducts products - open Cocartesian cocartesian - - field - distributeˡ : (A × B + A × C) ≅ (A × (B + C)) - - distributeʳ : ∀ {A B C : Obj} → (B × A + C × A) ≅ (B + C) × A - distributeʳ {A} {B} {C} = record - { from = (swap ∘ from) ∘ (swap +₁ swap) - ; to = ((swap +₁ swap) ∘ to) ∘ swap - ; iso = record - { isoˡ = begin - (((swap +₁ swap) ∘ to) ∘ swap) ∘ (swap ∘ from) ∘ (swap +₁ swap) ≈⟨ pullˡ (pullˡ (pullʳ swap∘swap)) ⟩ - ((((swap +₁ swap) ∘ to) ∘ id) ∘ from) ∘ (swap +₁ swap) ≈⟨ identityʳ ⟩∘⟨refl ⟩∘⟨refl ⟩ - (((swap +₁ swap) ∘ to) ∘ from) ∘ (swap +₁ swap) ≈⟨ pullʳ isoˡ ⟩∘⟨refl ⟩ - ((swap +₁ swap) ∘ id) ∘ (swap +₁ swap) ≈⟨ identityʳ ⟩∘⟨refl ⟩ - (swap +₁ swap) ∘ (swap +₁ swap) ≈⟨ +₁∘+₁ ⟩ - ((swap ∘ swap) +₁ (swap ∘ swap)) ≈⟨ +₁-cong₂ swap∘swap swap∘swap ⟩ - (id +₁ id) ≈⟨ +-unique id-comm-sym id-comm-sym ⟩ - id ∎ - ; isoʳ = begin - ((swap ∘ from) ∘ (swap +₁ swap)) ∘ ((swap +₁ swap) ∘ to) ∘ swap ≈⟨ pullˡ (pullˡ (pullʳ +₁∘+₁)) ⟩ - (((swap ∘ from) ∘ ((swap ∘ swap) +₁ (swap ∘ swap))) ∘ to) ∘ swap ≈⟨ (((refl⟩∘⟨ +₁-cong₂ swap∘swap swap∘swap) ⟩∘⟨refl) ⟩∘⟨refl) ⟩ - (((swap ∘ from) ∘ (id +₁ id)) ∘ to) ∘ swap ≈⟨ (((refl⟩∘⟨ +-unique id-comm-sym id-comm-sym) ⟩∘⟨refl) ⟩∘⟨refl) ⟩ - (((swap ∘ from) ∘ id) ∘ to) ∘ swap ≈⟨ ((identityʳ ⟩∘⟨refl) ⟩∘⟨refl) ⟩ - ((swap ∘ from) ∘ to) ∘ swap ≈⟨ (pullʳ isoʳ ⟩∘⟨refl) ⟩ - (swap ∘ id) ∘ swap ≈⟨ (identityʳ ⟩∘⟨refl) ⟩ - swap ∘ swap ≈⟨ swap∘swap ⟩ - id ∎ - } - } - where - open _≅_ (distributeˡ {A} {B} {C}) - open HomReasoning - open Equiv - open MR 𝒞 diff --git a/ElgotAlgebra.agda b/ElgotAlgebra.agda index 2b6d42e..f308b9f 100644 --- a/ElgotAlgebra.agda +++ b/ElgotAlgebra.agda @@ -6,7 +6,8 @@ open import Categories.Category open import Categories.Category.Cartesian open import Categories.Category.BinaryProducts open import Categories.Category.Cocartesian -open import Extensive.Bundle +open import Categories.Category.Extensive.Bundle +open import Categories.Category.Extensive import Categories.Morphism.Reasoning as MR private @@ -16,8 +17,8 @@ private module _ (D : ExtensiveDistributiveCategory o ℓ e) where open ExtensiveDistributiveCategory D renaming (U to C; id to idC) - open Cocartesian cocartesian - open Cartesian cartesian + open Cocartesian (Extensive.cocartesian extensive) + open Cartesian (ExtensiveDistributiveCategory.cartesian D) open MR C --* diff --git a/ElgotAlgebras.agda b/ElgotAlgebras.agda index 2470731..fdb7908 100644 --- a/ElgotAlgebras.agda +++ b/ElgotAlgebras.agda @@ -14,10 +14,9 @@ open import Categories.Object.Coproduct open import Categories.Category.BinaryProducts open import Categories.Category open import ElgotAlgebra -open import Distributive.Bundle -open import Distributive.Core -open import Extensive.Bundle -open import Extensive.Core +open import Categories.Category.Distributive +open import Categories.Category.Extensive.Bundle +open import Categories.Category.Extensive open import Categories.Morphism module ElgotAlgebras where @@ -28,8 +27,8 @@ private module _ (D : ExtensiveDistributiveCategory o ℓ e) where open ExtensiveDistributiveCategory D renaming (U to C; id to idC) - open Cocartesian cocartesian - open Cartesian cartesian + open Cocartesian (Extensive.cocartesian extensive) + open Cartesian (ExtensiveDistributiveCategory.cartesian D) open BinaryProducts products --* @@ -258,5 +257,5 @@ module _ (D : ExtensiveDistributiveCategory o ℓ e) where where open Exponential exp renaming (B^A to A^X; product to product') open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) - dstr = λ {X Y Z} → _≅_.to (distributeˡ {X} {Y} {Z}) - dstl = λ {X Y Z} → _≅_.to (distributeʳ {X} {Y} {Z}) \ No newline at end of file + dstr = λ {X Y Z} → IsIso.inv (isIsoˡ {X} {Y} {Z}) + dstl = λ {X Y Z} → IsIso.inv (isIsoʳ {X} {Y} {Z}) \ No newline at end of file diff --git a/Extensive/Bundle.agda b/Extensive/Bundle.agda deleted file mode 100644 index e6ec336..0000000 --- a/Extensive/Bundle.agda +++ /dev/null @@ -1,31 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Categories.Category -open import Categories.Category.Cartesian -open import Categories.Category.BinaryProducts -open import Categories.Category.Cocartesian -open import Distributive.Core -open import Extensive.Core -import Categories.Morphism as M - -module Extensive.Bundle where - -open import Level - -record ExtensiveCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where - field - U : Category o ℓ e - extensive : Extensive U - - open Category U public - open Extensive extensive public - -record ExtensiveDistributiveCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where - field - U : Category o ℓ e - cartesian : Cartesian U - extensive : Extensive U - - open Category U public - open Extensive extensive public - open Distributive (Extensive⇒Distributive cartesian extensive) public diff --git a/Extensive/Core.agda b/Extensive/Core.agda deleted file mode 100644 index df0d83e..0000000 --- a/Extensive/Core.agda +++ /dev/null @@ -1,99 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Extensive.Core where - --- https://ncatlab.org/nlab/show/extensive+category - -open import Level - -open import Categories.Category.Core -open import Distributive.Core -open import Categories.Diagram.Pullback -open import Categories.Category.Cocartesian -open import Categories.Category.Cartesian -open import Categories.Category.BinaryProducts -open import Categories.Object.Coproduct -open import Categories.Morphism -open import Function using (_$_) -open import Coproduct - - -private - variable - o ℓ e : Level - -record Extensive (𝒞 : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where - open Category 𝒞 - open Pullback - - field - cocartesian : Cocartesian 𝒞 - - module CC = Cocartesian cocartesian - open CC using (_+_; i₁; i₂; ¡) - - field - -- top-row is coproduct ⇒ pullback - cp⇒pullback₁ : {A B C D : Obj} (cp : Coproduct 𝒞 A B) (p₂ : A ⇒ C) (f : Coproduct.A+B cp ⇒ C + D) → IsPullback 𝒞 (Coproduct.i₁ cp) p₂ f i₁ - cp⇒pullback₂ : {A B C D : Obj} (cp : Coproduct 𝒞 A B) (p₂ : B ⇒ D) (f : Coproduct.A+B cp ⇒ C + D) → IsPullback 𝒞 (Coproduct.i₂ cp) p₂ f i₂ - - -- pullbacks ⇒ top-row is coproduct - pullbacks⇒cp : {A B C : Obj} {f : A ⇒ B + C} (P₁ : Pullback 𝒞 f i₁) (P₂ : Pullback 𝒞 f i₂) → IsCoproduct 𝒞 (Pullback.p₁ P₁) (Pullback.p₁ P₂) - -Extensive⇒Distributive : ∀ {𝒞 : Category o ℓ e} → (cartesian : Cartesian 𝒞) → (E : Extensive 𝒞) → Distributive 𝒞 cartesian (Extensive.cocartesian E) -Extensive⇒Distributive {𝒞 = 𝒞} cartesian E = record - { distributeˡ = λ {A} {B} {C} → ≅-sym 𝒞 $ iso {A} {B} {C} - } - where - open Category 𝒞 - open Extensive E - open Cocartesian cocartesian - open Cartesian cartesian - open BinaryProducts products - open HomReasoning - open Equiv - open ≅ using () renaming (sym to ≅-sym) - pb₁ : ∀ {A B C} → Pullback 𝒞 (π₂ {A = A} {B = B + C}) i₁ - pb₁ {A} {B} {C} = record { P = A × B ; p₁ = id ⁂ i₁ ; p₂ = π₂ ; isPullback = record - { commute = π₂∘⁂ - ; universal = λ {X} {h₁} {h₂} H → ⟨ π₁ ∘ h₁ , h₂ ⟩ - ; unique = λ {X} {h₁} {h₂} {i} {eq} H1 H2 → sym (unique (sym $ - begin - π₁ ∘ h₁ ≈⟨ ∘-resp-≈ʳ (sym H1) ⟩ - (π₁ ∘ (id ⁂ i₁) ∘ i) ≈⟨ sym-assoc ⟩ - ((π₁ ∘ (id ⁂ i₁)) ∘ i) ≈⟨ ∘-resp-≈ˡ π₁∘⁂ ⟩ - ((id ∘ π₁) ∘ i) ≈⟨ ∘-resp-≈ˡ identityˡ ⟩ - π₁ ∘ i ∎) H2) - ; p₁∘universal≈h₁ = λ {X} {h₁} {h₂} {eq} → - begin - (id ⁂ i₁) ∘ ⟨ π₁ ∘ h₁ , h₂ ⟩ ≈⟨ ⁂∘⟨⟩ ⟩ - ⟨ id ∘ π₁ ∘ h₁ , i₁ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congʳ identityˡ ⟩ - ⟨ π₁ ∘ h₁ , i₁ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congˡ (sym eq) ⟩ - ⟨ π₁ ∘ h₁ , π₂ ∘ h₁ ⟩ ≈⟨ g-η ⟩ - h₁ ∎ - ; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} → project₂ - } } - pb₂ : ∀ {A B C} → Pullback 𝒞 (π₂ {A = A} {B = B + C}) i₂ - pb₂ {A} {B} {C} = record { P = A × C ; p₁ = id ⁂ i₂ ; p₂ = π₂ ; isPullback = record - { commute = π₂∘⁂ - ; universal = λ {X} {h₁} {h₂} H → ⟨ π₁ ∘ h₁ , h₂ ⟩ - ; unique = λ {X} {h₁} {h₂} {i} {eq} H1 H2 → sym (unique (sym $ - begin - π₁ ∘ h₁ ≈⟨ ∘-resp-≈ʳ (sym H1) ⟩ - (π₁ ∘ (id ⁂ i₂) ∘ i) ≈⟨ sym-assoc ⟩ - ((π₁ ∘ (id ⁂ i₂)) ∘ i) ≈⟨ ∘-resp-≈ˡ π₁∘⁂ ⟩ - ((id ∘ π₁) ∘ i) ≈⟨ ∘-resp-≈ˡ identityˡ ⟩ - π₁ ∘ i ∎) H2) - ; p₁∘universal≈h₁ = λ {X} {h₁} {h₂} {eq} → - begin - (id ⁂ i₂) ∘ ⟨ π₁ ∘ h₁ , h₂ ⟩ ≈⟨ ⁂∘⟨⟩ ⟩ - ⟨ id ∘ π₁ ∘ h₁ , i₂ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congʳ identityˡ ⟩ - ⟨ π₁ ∘ h₁ , i₂ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congˡ (sym eq) ⟩ - ⟨ π₁ ∘ h₁ , π₂ ∘ h₁ ⟩ ≈⟨ g-η ⟩ - h₁ ∎ - ; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} → project₂ - } } - cp₁ : ∀ {A B C : Obj} → IsCoproduct 𝒞 {A+B = A × (B + C)} (id ⁂ i₁) (id ⁂ i₂) - cp₁ {A} {B} {C} = pullbacks⇒cp pb₁ pb₂ - cp₂ = λ {A B C : Obj} → coproduct {A × B} {A × C} - iso = λ {A B C : Obj} → Coproduct.up-to-iso 𝒞 (IsCoproduct⇒Coproduct 𝒞 (cp₁ {A} {B} {C})) cp₂ \ No newline at end of file