improve proves in delay chapter

This commit is contained in:
Leon Vatthauer 2024-02-26 15:06:51 +01:00
parent a9c587b1eb
commit be09d767ea
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 193 additions and 88 deletions

View file

@ -8,7 +8,7 @@ We write $\obj{C}$ for the objects of a category $\C$, $id_X$ for the identity m
We will also sometimes omit indices of the identity and of natural transformations in favor of readability. We will also sometimes omit indices of the identity and of natural transformations in favor of readability.
\section{Distributive and Cartesian Closed Categories} \section{Distributive and Cartesian Closed Categories}
Let us first introduce notation for binary (co-)products by giving their usual diagrams: Let us first introduce notation for binary (co-) products by giving their usual diagrams:
\begin{figure}[ht] \begin{figure}[ht]
% https://q.uiver.app/#q=WzAsOCxbMiwwLCJBIFxcdGltZXMgQiJdLFswLDAsIkEiXSxbNCwwLCJCIl0sWzIsMiwiQyJdLFs4LDAsIkEgKyBCIl0sWzYsMCwiQSJdLFsxMCwwLCJCIl0sWzgsMiwiQyJdLFswLDEsIlxccGlfMSIsMl0sWzAsMiwiXFxwaV8yIl0sWzMsMiwiZyIsMl0sWzMsMSwiZiJdLFszLDAsIlxcZXhpc3RzISBcXGxhbmdsZSBmICwgZyBcXHJhbmdsZSIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs1LDQsImlfMSJdLFs2LDQsImlfMiIsMl0sWzUsNywiZiIsMl0sWzYsNywiZyJdLFs0LDcsIlxcZXhpc3RzICEgW2YgLCBnXSIsMV1d % https://q.uiver.app/#q=WzAsOCxbMiwwLCJBIFxcdGltZXMgQiJdLFswLDAsIkEiXSxbNCwwLCJCIl0sWzIsMiwiQyJdLFs4LDAsIkEgKyBCIl0sWzYsMCwiQSJdLFsxMCwwLCJCIl0sWzgsMiwiQyJdLFswLDEsIlxccGlfMSIsMl0sWzAsMiwiXFxwaV8yIl0sWzMsMiwiZyIsMl0sWzMsMSwiZiJdLFszLDAsIlxcZXhpc3RzISBcXGxhbmdsZSBmICwgZyBcXHJhbmdsZSIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs1LDQsImlfMSJdLFs2LDQsImlfMiIsMl0sWzUsNywiZiIsMl0sWzYsNywiZyJdLFs0LDcsIlxcZXhpc3RzICEgW2YgLCBnXSIsMV1d
@ -34,10 +34,9 @@ We will furthermore overload this notation and write $f \times g := \langle f \c
We write $1$ for the terminal object together with the unique morphism $! : A \rightarrow 1$ and $0$ for the initial object with the unique morphism $\text{!`} : A \rightarrow 0$. We write $1$ for the terminal object together with the unique morphism $! : A \rightarrow 1$ and $0$ for the initial object with the unique morphism $\text{!`} : A \rightarrow 0$.
Categories with finite products (i.e. binary products and a terminal object) are also called cartesian and categories with finite coproducts (i.e. binary coproducts and an initial object) are called cocartesian. Categories with finite products (i.e.\ binary products and a terminal object) are also called cartesian and categories with finite coproducts (i.e. binary coproducts and an initial object) are called cocartesian.
\begin{definition}[Distributive Category] \begin{definition}[Distributive Category]~\label{def:distributive}
\label{def:distributive}
A cartesian and cocartesian category $\C$ is called distributive if the canonical (left) distributivity morphism $dstl^{-1}$ is an iso: A cartesian and cocartesian category $\C$ is called distributive if the canonical (left) distributivity morphism $dstl^{-1}$ is an iso:
% https://q.uiver.app/#q=WzAsMixbMCwwLCJYIFxcdGltZXMgWSArIFggXFx0aW1lcyBaIl0sWzMsMCwiWCBcXHRpbWVzIChZICsgWikiXSxbMCwxLCJkc3RsXnstMX0gOj0ge1xcbGJyYWNrIGlkIFxcdGltZXMgaV8xICwgaWQgXFx0aW1lcyBpXzIgXFxyYnJhY2t9IiwwLHsiY3VydmUiOi0zfV0sWzEsMCwiZHN0bCIsMCx7ImN1cnZlIjotM31dXQ== % https://q.uiver.app/#q=WzAsMixbMCwwLCJYIFxcdGltZXMgWSArIFggXFx0aW1lcyBaIl0sWzMsMCwiWCBcXHRpbWVzIChZICsgWikiXSxbMCwxLCJkc3RsXnstMX0gOj0ge1xcbGJyYWNrIGlkIFxcdGltZXMgaV8xICwgaWQgXFx0aW1lcyBpXzIgXFxyYnJhY2t9IiwwLHsiY3VydmUiOi0zfV0sWzEsMCwiZHN0bCIsMCx7ImN1cnZlIjotM31dXQ==
\[\begin{tikzcd} \[\begin{tikzcd}
@ -65,7 +64,7 @@ Categories with finite products (i.e. binary products and a terminal object) are
\end{remark} \end{remark}
\begin{proposition} \begin{proposition}
The distribution morphisms can be viewed as natural transformations i.e. they satisfy the following diagrams: The distribution morphisms can be viewed as natural transformations i.e.\ they satisfy the following diagrams:
% https://q.uiver.app/#q=WzAsOCxbMCwwLCJYIFxcdGltZXMgKFkgK1opIl0sWzIsMCwiQSBcXHRpbWVzIChCICsgQykiXSxbMCwxLCJYIFxcdGltZXMgWSArIFggXFx0aW1lcyBaIl0sWzIsMSwiQSBcXHRpbWVzIEIgKyBBIFxcdGltZXMgQyJdLFszLDAsIihZICsgWikgXFx0aW1lcyBYIl0sWzUsMCwiKEIgKyBDKSBcXHRpbWVzIEEiXSxbMywxLCJZIFxcdGltZXMgWCArIFogXFx0aW1lcyBYIl0sWzUsMSwiQiBcXHRpbWVzIEEgKyBDIFxcdGltZXMgQSJdLFswLDEsImYgXFx0aW1lcyAoZyArIGgpIl0sWzIsMywiZiBcXHRpbWVzIGcgKyBmIFxcdGltZXMgaCJdLFswLDIsImRzdGwiXSxbMSwzLCJkc3RsIl0sWzQsNSwiKGcgKyBoKSBcXHRpbWVzIGYiXSxbNCw2LCJkc3RyIiwyXSxbNSw3LCJkc3RyIl0sWzYsNywiZyBcXHRpbWVzIGYgKyBoIFxcdGltZXMgZiJdXQ== % https://q.uiver.app/#q=WzAsOCxbMCwwLCJYIFxcdGltZXMgKFkgK1opIl0sWzIsMCwiQSBcXHRpbWVzIChCICsgQykiXSxbMCwxLCJYIFxcdGltZXMgWSArIFggXFx0aW1lcyBaIl0sWzIsMSwiQSBcXHRpbWVzIEIgKyBBIFxcdGltZXMgQyJdLFszLDAsIihZICsgWikgXFx0aW1lcyBYIl0sWzUsMCwiKEIgKyBDKSBcXHRpbWVzIEEiXSxbMywxLCJZIFxcdGltZXMgWCArIFogXFx0aW1lcyBYIl0sWzUsMSwiQiBcXHRpbWVzIEEgKyBDIFxcdGltZXMgQSJdLFswLDEsImYgXFx0aW1lcyAoZyArIGgpIl0sWzIsMywiZiBcXHRpbWVzIGcgKyBmIFxcdGltZXMgaCJdLFswLDIsImRzdGwiXSxbMSwzLCJkc3RsIl0sWzQsNSwiKGcgKyBoKSBcXHRpbWVzIGYiXSxbNCw2LCJkc3RyIiwyXSxbNSw3LCJkc3RyIl0sWzYsNywiZyBcXHRpbWVzIGYgKyBoIFxcdGltZXMgZiJdXQ==
\[\begin{tikzcd}[column sep=4ex] \[\begin{tikzcd}[column sep=4ex]
{X \times (Y +Z)} && {A \times (B + C)} & {(Y + Z) \times X} && {(B + C) \times A} \\ {X \times (Y +Z)} && {A \times (B + C)} & {(Y + Z) \times X} && {(B + C) \times A} \\
@ -81,7 +80,7 @@ Categories with finite products (i.e. binary products and a terminal object) are
\end{tikzcd}\] \end{tikzcd}\]
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
We will prove naturality of $dstl$, naturality for $dstr$ is then analogous. We use the fact that $dstl^{-1}$ is an iso and therefore also an epi. We will prove naturality of $dstl$, naturality for $dstr$ is symmetric. We use the fact that $dstl^{-1}$ is an iso and therefore also an epi.
\begin{alignat*}{1} \begin{alignat*}{1}
&dstl \circ (f \times (g + h)) \circ dstl^{-1}\\ &dstl \circ (f \times (g + h)) \circ dstl^{-1}\\
@ -95,6 +94,65 @@ Categories with finite products (i.e. binary products and a terminal object) are
\end{alignat*} \end{alignat*}
\end{proof} \end{proof}
\begin{proposition}
The distribution morphisms satisfy the following equations:
\begin{alignat}{2}
&dstl \circ (id \times i_1) &&= i_1
\\&dstl \circ (id \times i_2) &&= i_2
\\&[ \pi_1 , \pi_1 ] \circ dstl &&= \pi_1
\\&( \pi_2 + \pi_2 ) \circ dstl &&= \pi_2
\\&dstl \circ swap &&= (swap + swap) \circ dstr
\\&dstr \circ (i_1 \times id) &&= i_1
\\&dstr \circ (i_2 \times id) &&= i_2
\\&(\pi_1 + \pi_1) \circ dstr &&= \pi_1
\\&[ \pi_2 , \pi_2 ] \circ dstr &&= \pi_2
\\&dstr \circ swap &&= (swap + swap) \circ dstl
\end{alignat}
\end{proposition}
\begin{proof}
Let us verify the five equations concerning $dstl$, the ones concerning $dstr$ follow symmetrically:
\begin{alignat*}{1}
&dstl \circ (id \times i_1)
\\=\;&dstl \circ [ id \times i_1 , id \times i_2 ] \circ i_1
\\=\;&dstl \circ dstl^{-1} \circ i_1
\\=\;&i_1
\end{alignat*}
\begin{alignat*}{1}
&dstl \circ (id \times i_2)
\\=\;&dstl \circ [ id \times i_1 , id \times i_2 ] \circ i_2
\\=\;&dstl \circ dstl^{-1} \circ i_2
\\=\;&i_2
\end{alignat*}
The next two follow by the fact that $dstl^{-1}$ is epic:
\begin{alignat*}{1}
&\pi_1 \circ dstl^{-1}
\\=\;&[ \pi_1 \circ (id \times i_1) , \pi_1 \circ (id \times i_2) ]
\\=\;&[ \pi_1 , \pi_1 ]
\end{alignat*}
\begin{alignat*}{1}
&\pi_2 \circ dstl^{-1}
\\=\;& [ \pi_2 \circ (id \times i_1) , \pi_2 \circ (id \times i_2) ]
\\=\;& \pi_2 + \pi_2
\end{alignat*}
And by monicity of $dstl^{-1}$:
\begin{alignat*}{1}
&dstl^{-1} \circ (swap + swap) \circ dstl
\\=\;&[ (id \times i_1) \circ swap, (id \times i_2) \circ swap ] \circ dstl
\\=\;&[ swap \circ (i_1 \times id) , swap \circ (i_2 \times id) ] \circ dstl
\\=\;&swap \circ dstl^{-1} \circ dstl
\\=\;&swap
\end{alignat*}
\end{proof}
\begin{definition}[Exponential Object] \begin{definition}[Exponential Object]
Let $\C$ be a cartesian category and $X , Y \in \vert \C \vert$. Let $\C$ be a cartesian category and $X , Y \in \vert \C \vert$.
An object $X^Y$ is called an exponential object (of $X$ and $Y$) if there exists an evaluation morphism $eval : X^Y \times Y \rightarrow X$ and for any $f : X \times Y \rightarrow Z$ there exists a morphism $curry\; f : X \rightarrow Z^Y$ that is unique with respect to the following diagram: An object $X^Y$ is called an exponential object (of $X$ and $Y$) if there exists an evaluation morphism $eval : X^Y \times Y \rightarrow X$ and for any $f : X \times Y \rightarrow Z$ there exists a morphism $curry\; f : X \rightarrow Z^Y$ that is unique with respect to the following diagram:

View file

@ -113,15 +113,22 @@ The endofunctor $MX = X + 1$ extends to a monad by taking $\eta_X = i_1 : X \rig
\arrow["{id+\;!}", from=3-4, to=5-4] \arrow["{id+\;!}", from=3-4, to=5-4]
\arrow["{\langle i_1,id\rangle + \;!}"', from=1-1, to=5-4] \arrow["{\langle i_1,id\rangle + \;!}"', from=1-1, to=5-4]
\end{tikzcd}\] \end{tikzcd}\]
By pre-composing with $i_1$ and $i_2$ it suffices to show that
\[i_1 \circ \langle i_1 , id \rangle = (id\;+\;!) \circ dstl \circ \langle i_1 , i_1 \rangle\] This is easily proven by pre-composing with $i_1$ and $i_2$:
and \begin{alignat*}{1}
\[i_2 \;\circ \;! = (id\;+\;!) \circ dstl \circ \langle i_2 , i_2 \rangle\] &(id\;+\;!) \circ dstl \circ \langle i_1 , i_1 \rangle
which follow easily by the facts that \\=\;&(id\;+\;!) \circ dstl \circ (id \times i_1) \circ \langle i_1 , id \rangle
\[dstl \circ (id \times i_1) = i_1\] \\=\;&(id\;+\;!) \circ i_1 \circ \langle i_1 , id \rangle
and \\=\;&i_1 \circ \langle i_1 , id \rangle
\[dstl \circ (id \times i_2) = i_2\] \end{alignat*}
that are both proven by monicity of $dstl^{-1}$.
\begin{alignat*}{1}
&(id\;+\;!) \circ dstl \circ \langle i_2 , i_2 \rangle
\\=\;&(id\;+\;!) \circ dstl \circ (id \times i_2) \circ \langle i_2 , id \rangle
\\=\;&(id\;+\;!) \circ i_2 \circ \langle i_2 , id \rangle
\\=\;&i_2 \;\circ\; ! \circ \langle i_2 , id \rangle
\\=\;&i_2 \;\circ\; !
\end{alignat*}
\end{proof} \end{proof}
In the setting of classical mathematics this monad is therefore sufficient for modelling partiality, but in general it will not be useful for modelling non-termination as a side effect, since one would need to know beforehand whether a program terminates or not. For the purpose of modelling possibly non-terminating computations another monad has been developed by Capretta~\cite{delay}. In the setting of classical mathematics this monad is therefore sufficient for modelling partiality, but in general it will not be useful for modelling non-termination as a side effect, since one would need to know beforehand whether a program terminates or not. For the purpose of modelling possibly non-terminating computations another monad has been developed by Capretta~\cite{delay}.
@ -141,13 +148,12 @@ Categorically we obtain this monad by the final coalgebras $DX = \nu A. X + A$,
Since $DX$ is defined as a final coalgebra, we can define morphisms via corecursion and prove theorems by coinduction. By Lambek's lemma the coalgebra structure $out : DX \rightarrow X + DX$ is an isomorphism, whose inverse can be decomposed into the two constructors mentioned before: $out^{-1} = [ now , later ] : X + DX \rightarrow DX$. Since $DX$ is defined as a final coalgebra, we can define morphisms via corecursion and prove theorems by coinduction. By Lambek's lemma the coalgebra structure $out : DX \rightarrow X + DX$ is an isomorphism, whose inverse can be decomposed into the two constructors mentioned before: $out^{-1} = [ now , later ] : X + DX \rightarrow DX$.
\begin{proposition} \begin{proposition}~\label{col:delay}
\label{col:delay}
The following conditions hold: The following conditions hold:
\begin{itemize} \begin{itemize}
\item There exists a unit morphism $now : X \rightarrow DX$ for any DX, satisfying \item $now : X \rightarrow DX$ and $later : DX \rightarrow DX$ satisfy:
\begin{equation*} \begin{equation*}
out \circ now = i_1 \tag*{(D1)}\label{D1} out \circ now = i_1 \qquad\qquad\qquad out \circ later = i_2 \tag*{(D1)}\label{D1}
\end{equation*} \end{equation*}
\item For any $f : X \rightarrow DY$ there exists a unique morphism $f^* : DX \rightarrow DY$ satisfying: \item For any $f : X \rightarrow DY$ there exists a unique morphism $f^* : DX \rightarrow DY$ satisfying:
\begin{equation*} \begin{equation*}
@ -179,7 +185,11 @@ Since $DX$ is defined as a final coalgebra, we can define morphisms via corecurs
\begin{proof} \begin{proof}
We will make use of the fact that every $DX$ is a final coalgebra: We will make use of the fact that every $DX$ is a final coalgebra:
\begin{itemize} \begin{itemize}
\item[\ref{D1}] This follows by definition of $now$. \item[\ref{D1}] These follow by definition:
\begin{alignat*}{3}
&out \circ now &&= out \circ out^{-1} \circ i_1 &= i_1
\\&out \circ later &&= out \circ out^{-1} \circ i_2 &= i_2
\end{alignat*}
\item[\ref{D2}] We define $f^* = \;\coalg{\alpha} \circ i_1$, where $\coalg{\alpha}$ is the unique coalgebra morphism in this diagram: \item[\ref{D2}] We define $f^* = \;\coalg{\alpha} \circ i_1$, where $\coalg{\alpha}$ is the unique coalgebra morphism in this diagram:
% https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWCArIERZIl0sWzcsMSwiWSArIChEWCArIERZKSJdLFswLDAsIkRYIl0sWzAsMiwiRFkiXSxbNywyLCJZICsgRFkiXSxbMCwxLCJcXGFscGhhIDo9IFsgWyBbIGlfMSAsIGlfMiBcXGNpcmMgaV8yIF0gXFxjaXJjIChvdXQgXFxjaXJjIGYpICwgaV8yIFxcY2lyYyBpXzEgXSBcXGNpcmMgb3V0ICwgKGlkICsgaV8yKSBcXGNpcmMgb3V0IF0iXSxbMiwwLCJpXzEiXSxbMCwzLCJcXGNvYWxne1xcYWxwaGF9IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzMsNCwib3V0Il0sWzEsNCwiaWQgKyBcXGNvYWxne1xcYWxwaGF9IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d % https://q.uiver.app/#q=WzAsNSxbMCwxLCJEWCArIERZIl0sWzcsMSwiWSArIChEWCArIERZKSJdLFswLDAsIkRYIl0sWzAsMiwiRFkiXSxbNywyLCJZICsgRFkiXSxbMCwxLCJcXGFscGhhIDo9IFsgWyBbIGlfMSAsIGlfMiBcXGNpcmMgaV8yIF0gXFxjaXJjIChvdXQgXFxjaXJjIGYpICwgaV8yIFxcY2lyYyBpXzEgXSBcXGNpcmMgb3V0ICwgKGlkICsgaV8yKSBcXGNpcmMgb3V0IF0iXSxbMiwwLCJpXzEiXSxbMCwzLCJcXGNvYWxne1xcYWxwaGF9IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzMsNCwib3V0Il0sWzEsNCwiaWQgKyBcXGNvYWxne1xcYWxwaGF9IiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d
@ -193,12 +203,39 @@ Since $DX$ is defined as a final coalgebra, we can define morphisms via corecurs
\arrow["out", from=3-1, to=3-8] \arrow["out", from=3-1, to=3-8]
\arrow["{id + \coalg{\alpha}}", dashed, from=2-8, to=3-8] \arrow["{id + \coalg{\alpha}}", dashed, from=2-8, to=3-8]
\end{tikzcd}\] \end{tikzcd}\]
$out \circ f^* = [ out \circ f , i_2 \circ f^* ] \circ out$ then follows from this diagram.
\improvement{Details of why it is coalgebra morphism} Note that $\coalg{\alpha} \circ i_2 = id : (DY, out) \rightarrow (DY, out)$, by uniqueness of the identity morphism and the fact that $\coalg{\alpha} \circ i_2$ is a coalgebra morphism:
\begin{alignat*}{1}
&out \circ \coalg{\alpha} \circ i_2
\\=\;&(id+\coalg{\alpha}) \circ \alpha \circ i_2
\\=\;&(id + \coalg{\alpha}) \circ (id + i_2) \circ out
\\=\;&(id + \coalg{\alpha} \circ i_2) \circ out
\end{alignat*}
Let us verify that $f^*$ indeed satisfies the requisite property:
We are left to check uniqueness. Let $g : DX \rightarrow DY$ and $out \circ g = [ out \circ f , i_2 \circ g ] \circ out$. \begin{alignat*}{1}
Then $[ g , id ] : DX + DY \rightarrow DY$ is a coalgebra morphism and thus $[ g , id ] =\;\coalg{\alpha}$ by uniqueness of $\coalg{\alpha}$. &out \circ \coalg{\alpha} \circ i_1
\\=\;&(id + \coalg{\alpha}) \circ \alpha \circ i_1
\\=\;&(id + \coalg{\alpha}) \circ [ [ i_1 , i_2 \circ i_2 ] \circ out \circ f , i_2 \circ i_1 ] \circ out
\\=\;&[ [ (id + \coalg{\alpha}) \circ i_1 , (id + \coalg{\alpha}) \circ i_2 \circ i_2 ] \circ out \circ f , (id + \coalg{\alpha}) \circ i_2 \circ i_1 ] \circ out
\\=\;&[ [ i_1 , i_2 \circ \coalg{\alpha} \circ i_2 ] \circ out \circ f , i_2 \circ \coalg{\alpha} \circ i_1 ] \circ out
\\=\;&[ out \circ f , i_2 \circ f^* ] \circ out
\end{alignat*}
We are left to check uniqueness of $f^*$. Let $g : DX \rightarrow DY$ and $out \circ g = [ out \circ f , i_2 \circ g ] \circ out$.
Note that $[ g , id ] : DX + DY \rightarrow DY$ is a coalgebra morphism:
\begin{alignat*}{1}
&out \circ [ g , id ]
\\=\;&[ out \circ g , out ]
\\=\;&[ [ out \circ f , i_2 \circ g ] \circ out , out]
\\=\;&[ [ [ i_1 , i_2 ] \circ out \circ f , i_2 \circ g ] \circ out , (id + id) \circ out ]
\\=\;&[ [ [ i_1 , i_2 \circ [g , id] \circ i_2 ] \circ out \circ f , i_2 \circ [g , id] \circ i_1 ] \circ out , (id + [g , id] \circ i_2) \circ out ]
\\=\;&[ [ [ (id + [g , id]) \circ i_1 , (id + [g , id]) \circ i_2 \circ i_2 ] \circ out \circ f , (id + [g , id]) \circ i_2 \circ i_1 ] \circ out
\\\;&, (id + [g , id]) \circ (id + i_2) \circ out ]
\\=\;&(id + [g , id]) \circ [ [ [ i_1 , i_2 \circ i_2 ] \circ out \circ f , i_2 \circ i_1 ] \circ out , (id + i_2) \circ out ]
\end{alignat*}
Thus, $[ g , id ] = \coalg{\alpha}$ by uniqueness of $\coalg{\alpha}$.
It follows: \[g = [ g , id ] \circ i_1 =\;\coalg{\alpha} \circ i_1 = f^*\] It follows: \[g = [ g , id ] \circ i_1 =\;\coalg{\alpha} \circ i_1 = f^*\]
\item[\ref{D3}] This follows immediately since $\tau$ is the unique coalgebra morphism from $(X \times DY, dstl \circ (id \times out))$ into the terminal coalgebra $(D(X \times Y) , out)$. \item[\ref{D3}] This follows immediately since $\tau$ is the unique coalgebra morphism from $(X \times DY, dstl \circ (id \times out))$ into the terminal coalgebra $(D(X \times Y) , out)$.
\end{itemize} \end{itemize}
@ -231,8 +268,7 @@ Since $DX$ is defined as a final coalgebra, we can define morphisms via corecurs
\end{proof} \end{proof}
Finality of the coalgebras $(DX, out : DX \rightarrow X + DX)_{X \in \obj{\C}}$ yields the following proof principle: Finality of the coalgebras $(DX, out : DX \rightarrow X + DX)_{X \in \obj{\C}}$ yields the following proof principle:
\begin{remark}[Proof by coinduction] \begin{remark}[Proof by coinduction]~\label{rem:coinduction}
\label{rem:coinduction}
Given two morphisms $f, g : X \rightarrow DY$. To show that $f = g$ it suffices to show that there exists a coalgebra structure $\alpha : X \rightarrow Y + X$ such that the following diagrams commute: Given two morphisms $f, g : X \rightarrow DY$. To show that $f = g$ it suffices to show that there exists a coalgebra structure $\alpha : X \rightarrow Y + X$ such that the following diagrams commute:
% https://q.uiver.app/#q=WzAsOCxbMCwwLCJYIl0sWzAsMSwiRFkiXSxbMiwxLCJZICsgRFkiXSxbMiwwLCJZICsgWCJdLFs0LDAsIlgiXSxbNCwxLCJEWSJdLFs2LDAsIlkgKyBYIl0sWzYsMSwiWSArIERZIl0sWzEsMiwib3V0Il0sWzAsMywiXFxhbHBoYSJdLFswLDEsImYiXSxbMywyLCJpZCArIGYiXSxbNCw2LCJcXGFscGhhIl0sWzQsNSwiZyJdLFs2LDcsImlkICsgZyJdLFs1LDcsIm91dCJdXQ== % https://q.uiver.app/#q=WzAsOCxbMCwwLCJYIl0sWzAsMSwiRFkiXSxbMiwxLCJZICsgRFkiXSxbMiwwLCJZICsgWCJdLFs0LDAsIlgiXSxbNCwxLCJEWSJdLFs2LDAsIlkgKyBYIl0sWzYsMSwiWSArIERZIl0sWzEsMiwib3V0Il0sWzAsMywiXFxhbHBoYSJdLFswLDEsImYiXSxbMywyLCJpZCArIGYiXSxbNCw2LCJcXGFscGhhIl0sWzQsNSwiZyJdLFs2LDcsImlkICsgZyJdLFs1LDcsIm91dCJdXQ==
\[\begin{tikzcd}[ampersand replacement=\&] \[\begin{tikzcd}[ampersand replacement=\&]
@ -271,7 +307,7 @@ Finality of the coalgebras $(DX, out : DX \rightarrow X + DX)_{X \in \obj{\C}}$
\arrow["{f \times g + id}", from=1-3, to=1-5] \arrow["{f \times g + id}", from=1-3, to=1-5]
\arrow["{id + \coalg{-}}", dashed, from=1-5, to=3-5] \arrow["{id + \coalg{-}}", dashed, from=1-5, to=3-5]
\end{tikzcd}\] \end{tikzcd}\]
We write $\coalg{-}$ to abbreviate the used coalgebra, i.e. in this diagram $\coalg{-} = \coalg{(f\times g + id) \circ dstl \circ (id \times out)}$ We write $\coalg{-}$ to abbreviate the used coalgebra, i.e.\ in this diagram $\coalg{-} = \coalg{(f\times g + id) \circ dstl \circ (id \times out)}$
Next we check the strength laws: Next we check the strength laws:
\begin{itemize} \begin{itemize}
@ -369,11 +405,12 @@ To prove that $\mathbf{D}$ is commutative we will use another proof principle pr
Let us record some facts that we will use to prove commutativity of $\mathbf{D}$: Let us record some facts that we will use to prove commutativity of $\mathbf{D}$:
\begin{corollary} \begin{corollary}
The following two properties hold: The following properties hold:
\begin{alignat*}{1} \begin{alignat}{1}
&out \circ Df = (f + Df) \circ out &out \circ Df = (f + Df) \circ out\label{eq:outD}
\\&later \circ f^* = (later \circ f)^* = f^* \circ later \\&f^* = [ f , {(later \circ f)}^* ] \circ out\label{eq:f*help}
\end{alignat*} \\&later \circ f^* = {(later \circ f)}^* = f^* \circ later\label{eq:later*}
\end{alignat}
As well as these properties of $\tau$ and $\sigma$: As well as these properties of $\tau$ and $\sigma$:
\begin{alignat*}{2} \begin{alignat*}{2}
@ -385,37 +422,65 @@ Let us record some facts that we will use to prove commutativity of $\mathbf{D}$
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
Let us start with the first two properties: We prove them one by one:
\begin{alignat*}{1}
&out \circ Df
\\=\;&out \circ (now \circ f)^*
\\=\;&[ out \circ now \circ f , i_2 \circ (now \circ f)^* ] \circ out\tag*{\ref{D2}}
\\=\;&(f + Df) \circ out\tag*{\ref{D1}}
\end{alignat*}
\begin{alignat*}{1}
&(later \circ f)^*
% ... TODO
\\=\;&later \circ f^*
% ... TODO
\\=\;&f^* \circ later
\end{alignat*}
\begin{itemize} \begin{itemize}
\item[\ref{tau1}] This is just \ref{D3} restated. \item[(\ref{eq:outD})] Note that $Df = {(now \circ f)}^*$ definitionally for any $f : X \rightarrow TY$. This is then simply a consequence of~\ref*{D2}.
\begin{alignat*}{1}
&out \circ Df
\\=\;&out \circ {(now \circ f)}^*
\\=\;&[ out \circ now \circ f , i_2 \circ {(now \circ f)}^* ] \circ out\tag*{\ref{D2}}
\\=\;&(f + Df) \circ out\tag*{\ref{D1}}
\end{alignat*}
\item[(\ref{eq:f*help})] By uniqueness of $f^*$ it suffices to show:
\begin{alignat*}{1}
&out \circ [ f , {(later \circ f)}^* ] \circ out
\\=\;&[ out \circ f , out \circ {(later \circ f)}^* ] \circ out
\\=\;&[out \circ f , [ out \circ later \circ f , i_2 \circ {(later \circ f)}^* ] \circ out ] \circ out\tag*{\ref{D2}}
\\=\;&[out \circ f , i_2 \circ [ f , {(later \circ f)}^* ] \circ out ] \circ out\tag*{\ref{D1}}
\end{alignat*}
\item[(\ref{eq:later*})]
The next one follows by monicity of $out$:
\begin{alignat*}{1}
&out \circ {(later \circ f)}^*
\\=\;&[ out \circ later \circ f , i_2 \circ {(later \circ f)}^*] \circ out\tag*{\ref{D2}}
\\=\;&i_2 \circ [ f , {(later \circ f)}^*] \circ out\tag*{\ref{D1}}
\\=\;&i_2 \circ f^*\tag*{(\ref{eq:f*help})}
\\=\;&out \circ later \circ f^*\tag*{\ref{D1}}
\\=\;&i_2 \circ f^*\tag*{\ref{D1}}
\\=\;&[ out \circ f , i_2 \circ f^* ] \circ i_2
\\=\;&[ out \circ f , i_2 \circ f^* ] \circ out \circ later\tag*{\ref{D1}}
\\=\;&out \circ f^* \circ later \tag*{\ref{D2}}
\end{alignat*}
\end{itemize}
\begin{itemize}
\item[\ref{tau1}] This is just~\ref{D3} restated.
\item[\ref{sigma1}] \item[\ref{sigma1}]
\todo[inline]{What to do about out-law?} \begin{alignat*}{1}
\begin{alignat*}{1} &out \circ \sigma
& out \circ Dswap \circ \tau \circ swap \\=\;&out \circ Dswap \circ \tau \circ swap
\\=\;&(swap + Dswap) \circ out \circ \tau \circ swap \\=\;&(swap + Dswap) \circ out \circ \tau \circ swap\tag*{(\ref{eq:outD})}
\\=\;&(swap + Dswap) \circ (id + \tau) \circ dstl \circ (id \times out) \circ swap \tag*{\ref{tau1}} \\=\;&(swap + Dswap) \circ (id + \tau) \circ dstl \circ (id \times out) \circ swap \tag*{\ref{tau1}}
\\=\;&(swap + Dswap) \circ (id + \tau) \circ dstl \circ swap \circ (out \times id) \\=\;&(swap + Dswap) \circ (id + \tau) \circ dstl \circ swap \circ (out \times id)
\\=\;&(swap + Dswap) \circ (id + \tau) \circ (swap + swap) \circ dstr \circ (out \times id) \\=\;&(swap + Dswap) \circ (id + \tau) \circ (swap + swap) \circ dstr \circ (out \times id)
\\=\;&(id + \sigma) \circ dstr \circ (out \times id) \\=\;&(id + \sigma) \circ dstr \circ (out \times id)
\end{alignat*} \end{alignat*}
\item[\ref{tau2}] \item[\ref{tau2}] By monicity of $out$:
\item[\ref{sigma2}] \begin{alignat*}{1}
&out \circ \tau \circ (id \times out^{-1})
\\=\;&(id + \tau) \circ dstl \circ (id \times out) \circ (id \times out^{-1})\tag*{\ref{tau1}}
\\=\;&(id + \tau) \circ dstl
\end{alignat*}
\item[\ref{sigma2}] By monicity of $out$:
\begin{alignat*}{1}
&out \circ \sigma \circ (out^{-1} \times id)
\\=\;&(id + \sigma) \circ dstr \circ (out \times id) \circ (out^{-1} \times id)\tag*{\ref{sigma1}}
\\=\;&(id + \sigma) \circ dstr
\end{alignat*}
\end{itemize} \end{itemize}
\end{proof} \end{proof}
@ -423,7 +488,7 @@ Let us record some facts that we will use to prove commutativity of $\mathbf{D}$
$\mathbf{D}$ is commutative. $\mathbf{D}$ is commutative.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Using corollary~\ref{cor:solution} it suffices to show that both $\tau^* \circ \sigma$ and $\sigma^* \circ \tau$ are solutions of some guarded morphism $g$. Using \autoref{cor:solution} it suffices to show that both $\tau^* \circ \sigma$ and $\sigma^* \circ \tau$ are solutions of some guarded morphism $g$.
Let $w = (dstr + dstr) \circ dstl \circ (out \times out)$ and take Let $w = (dstr + dstr) \circ dstl \circ (out \times out)$ and take
\[g = out^{-1} \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\] \[g = out^{-1} \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\]
@ -436,30 +501,14 @@ Let us record some facts that we will use to prove commutativity of $\mathbf{D}$
The last step in both equations holds generally for any $f : DX \times DY \rightarrow D(X \times Y)$ by monicity of $out$: The last step in both equations holds generally for any $f : DX \times DY \rightarrow D(X \times Y)$ by monicity of $out$:
\begin{alignat*}{1} \begin{alignat*}{1}
& out \circ [ now , f ]^* \circ out^{-1} \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w \\ & out \circ {[ now , f ]}^* \circ out^{-1} \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w
=\; & [ out \circ [ now , f ] , i_2 \circ [ now , f ]^* ] \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\tag*{\ref{D2}} \\ \\=\; & [ out \circ [ now , f ] , i_2 \circ {[ now , f ]}^* ] \circ [ i_1 + D i_1 \circ \sigma , i_2 \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\tag*{\ref{D2}}
=\; & [ id + \sigma , i_2 \circ [ now , f]^* \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\tag*{\ref{D1}} \\ \\=\; & [ id + \sigma , i_2 \circ {[ now , f]}^* \circ [ D i_1 \circ \tau , later \circ now \circ i_2 ] ] \circ w\tag*{\ref{D1}}
=\; & [ id + \sigma , i_2 \circ [ \tau , [ now , f]^* \circ later \circ now \circ i_2 ] ] \circ w \\ \\=\; & [ id + \sigma , i_2 \circ [ \tau , {[ now , f]}^* \circ later \circ now \circ i_2 ] ] \circ w
=\; & [ id + \sigma , i_2 \circ [ \tau , [ later \circ now , later \circ f]^* \circ now \circ i_2 ] ] \circ w \\ \\=\; & [ id + \sigma , i_2 \circ [ \tau , {[ later \circ now , later \circ f]}^* \circ now \circ i_2 ] ] \circ w\tag*{(\ref{eq:later*})}
=\; & [ id + \sigma , i_2 \circ [ \tau , later \circ f ] ] \circ w \\=\; & [ id + \sigma , i_2 \circ [ \tau , later \circ f ] ] \circ w
\end{alignat*} \end{alignat*}
\todo[inline]{The second to last step uses that $f^* \circ later = (later \circ f)^*$ this should be proven somewhere and referenced here.}
\todo[inline]{The fact that $f^* \circ Dg = (f \circ g)^*$ should be mentioned somewhere (in preliminaries!)}
\change[inline]{Move this remark to the beginning of proof}
The first step in both equations can be proven by monicity of $out$ and then using \ref{D3} and the dual diagram for $\sigma$ which is a direct consequence of \ref{D3}:
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIFxcdGltZXMgRFkiXSxbMCwxLCJEKFggXFx0aW1lcyBZKSJdLFs0LDAsIlggXFx0aW1lcyBZICsgWCBcXHRpbWVzIERZIl0sWzQsMSwiWCBcXHRpbWVzIFkgK0QoWCBcXHRpbWVzIFkpIl0sWzIsMCwiWCBcXHRpbWVzIChZICsgRFkpIl0sWzAsMSwiXFxzaWdtYSJdLFsxLDMsIm91dCJdLFsyLDMsImlkICsgXFxoYXR7XFx0YXV9IiwyXSxbMCw0LCJpZCBcXHRpbWVzIG91dCJdLFs0LDIsImRzdGwiXV0=
\[\begin{tikzcd}[ampersand replacement=\&]
{X \times DY} \&\& {X \times (Y + DY)} \&\& {X \times Y + X \times DY} \\
{D(X \times Y)} \&\&\&\& {X \times Y +D(X \times Y)}
\arrow["\sigma", from=1-1, to=2-1]
\arrow["out", from=2-1, to=2-5]
\arrow["{id + \hat{\tau}}"', from=1-5, to=2-5]
\arrow["{id \times out}", from=1-1, to=1-3]
\arrow["dstl", from=1-3, to=1-5]
\end{tikzcd}\]
Let us now check the first step in the equation for $\sigma^* \circ \tau$, the same step for $\tau^* \circ \sigma$ is then symmetric. Let us now check the first step in the equation for $\sigma^* \circ \tau$, the same step for $\tau^* \circ \sigma$ is then symmetric.
Again we proceed by monicity of $out$: Again we proceed by monicity of $out$:
@ -467,18 +516,18 @@ Let us record some facts that we will use to prove commutativity of $\mathbf{D}$
& out \circ \sigma^* \circ \tau & out \circ \sigma^* \circ \tau
\\=\;&[ out \circ \sigma , i_2 \circ \sigma^* ] \circ out \circ \tau\tag*{\ref{D2}} \\=\;&[ out \circ \sigma , i_2 \circ \sigma^* ] \circ out \circ \tau\tag*{\ref{D2}}
\\=\;&[ out \circ \sigma , i_2 \circ \sigma^* ] \circ (id + \tau) \circ dstl \circ (id \times out)\tag*{\ref{D3}} \\=\;&[ out \circ \sigma , i_2 \circ \sigma^* ] \circ (id + \tau) \circ dstl \circ (id \times out)\tag*{\ref{D3}}
\\=\;&[ (id + \sigma) \circ dstr \circ (out \times id) , i_2 \circ \sigma^* \circ \tau ] \circ dstl \circ (id \times out)\tag*{(outsigma)} \\=\;&[ (id + \sigma) \circ dstr \circ (out \times id) , i_2 \circ \sigma^* \circ \tau ] \circ dstl \circ (id \times out)\tag*{\ref{sigma1}}
\\=\;&[ (id + \sigma) \circ dstr \circ (out \times id) , i_2 \circ \sigma^* \circ \tau ] \circ ((out^{-1} \times id) + (out^{-1} \times id)) \circ dstl \circ (out \times out) \\=\;&[ (id + \sigma) \circ dstr \circ (out \times id) , i_2 \circ \sigma^* \circ \tau ] \circ ((out^{-1} \times id) + (out^{-1} \times id)) \circ dstl \circ (out \times out)
\\=\;&[ (id + \sigma) \circ dstr, i_2 \circ \sigma^* \circ \tau \circ (out^{-1} \times id)] \circ dstl \circ (out \times out) \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ \sigma^* \circ \tau \circ (out^{-1} \times id)] \circ dstl \circ (out \times out)
\\=\;&[ (id + \sigma) \circ dstr, i_2 \circ \sigma^* \circ D(out^{-1} \times id) \circ \tau] \circ dstl \circ (out \times out) \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ \sigma^* \circ D(out^{-1} \times id) \circ \tau] \circ dstl \circ (out \times out)
\\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (\sigma \times (out^{-1} \times id))^* \circ \tau] \circ dstl \circ (out \times out) \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (\sigma \times (out^{-1} \times id))^* \circ \tau] \circ dstl \circ (out \times out)
\\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (out^{-1} \circ (id + \sigma) \circ dstr)^* \circ \tau] \circ dstl \circ (out \times out)\tag*{($\sigma$)} \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (out^{-1} \circ (id + \sigma) \circ dstr)^* \circ \tau] \circ dstl \circ (out \times out)\tag*{\ref{sigma2}}
\\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (out^{-1} \circ (id + \sigma))^* \circ Ddstr \circ \tau] \circ dstl \circ (out \times out) \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (out^{-1} \circ (id + \sigma))^* \circ Ddstr \circ \tau] \circ dstl \circ (out \times out)
\\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (out^{-1} \circ (id + \sigma))^* \circ [D i_1 \circ \tau , D i_2 \circ \tau] \circ dstr] \circ dstl \circ (out \times out)\tag*{\ref{Dcomm-helper}} \\=\;&[ (id + \sigma) \circ dstr, i_2 \circ (out^{-1} \circ (id + \sigma))^* \circ [D i_1 \circ \tau , D i_2 \circ \tau] \circ dstr] \circ dstl \circ (out \times out)\tag*{\ref{Dcomm-helper}}
\\=\;&[ (id + \sigma), i_2 \circ (out^{-1} \circ (id + \sigma))^* \circ [D i_1 \circ \tau , D i_2 \circ \tau]] \circ (dstr + dstr) \circ dstl \circ (out \times out) \\=\;&[ (id + \sigma), i_2 \circ (out^{-1} \circ (id + \sigma))^* \circ [D i_1 \circ \tau , D i_2 \circ \tau]] \circ (dstr + dstr) \circ dstl \circ (out \times out)
\\=\;&[ (id + \sigma), i_2 \circ [(out^{-1} \circ i_1)^* \circ \tau , (out^{-1} \circ i_2 \circ \sigma)^* \circ \tau]] \circ w \\=\;&[ (id + \sigma), i_2 \circ [(out^{-1} \circ i_1)^* \circ \tau , (out^{-1} \circ i_2 \circ \sigma)^* \circ \tau]] \circ w
\\=\;&[ (id + \sigma), i_2 \circ [ \tau , (later \circ \sigma)^* \circ \tau]] \circ w \tag*{\ref{K1}} \\=\;&[ (id + \sigma), i_2 \circ [ \tau , (later \circ \sigma)^* \circ \tau]] \circ w \tag*{\ref{K1}}
\\=\;&[ (id + \sigma), i_2 \circ [ \tau , later \circ \sigma^* \circ \tau]] \circ w \tag*{(later)} \\=\;&[ (id + \sigma), i_2 \circ [ \tau , later \circ \sigma^* \circ \tau]] \circ w \tag*{(\ref{eq:later*})}
\end{alignat*} \end{alignat*}
where where
@ -491,8 +540,6 @@ Let us record some facts that we will use to prove commutativity of $\mathbf{D}$
\\=\;&[ Ddstr \circ D(i_1 \times id) \circ \tau , Ddstr \circ D(i_2 \times id) \circ \tau ] \\=\;&[ Ddstr \circ D(i_1 \times id) \circ \tau , Ddstr \circ D(i_2 \times id) \circ \tau ]
\\=\;&[ Di_1 \circ \tau , Di_2 \circ \tau ] \\=\;&[ Di_1 \circ \tau , Di_2 \circ \tau ]
\end{alignat*} \end{alignat*}
\todo[inline]{Add $dstl-i_1$ etc. to preliminaries as corollary!}
\end{proof} \end{proof}
\improvement[inline]{Elaborate more?} \improvement[inline]{Elaborate more?}