mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
🚧 Small progress, stuck on multiple fronts
This commit is contained in:
parent
09732380ec
commit
c166f40576
7 changed files with 349 additions and 61 deletions
|
@ -5,6 +5,11 @@ open import Level
|
|||
open import Category.Instance.AmbientCategory using (Ambient)
|
||||
open import Categories.FreeObjects.Free
|
||||
open import Categories.Functor.Core
|
||||
open import Categories.Functor.Algebra
|
||||
open import Categories.Functor.Coalgebra
|
||||
open import Categories.Object.Terminal
|
||||
open import Categories.Category.Construction.EilenbergMoore
|
||||
open import Categories.Monad.Relative renaming (Monad to RMonad)
|
||||
```
|
||||
-->
|
||||
|
||||
|
@ -15,8 +20,14 @@ module Algebra.Properties {o ℓ e} (ambient : Ambient o ℓ e) where
|
|||
open import Algebra.UniformIterationAlgebra ambient
|
||||
open import Category.Construction.ElgotAlgebras ambient
|
||||
open import Category.Construction.UniformIterationAlgebras ambient
|
||||
open import Algebra.Search ambient
|
||||
open import Monad.Instance.Delay ambient
|
||||
open import Categories.Morphism.Properties C
|
||||
|
||||
open Equiv
|
||||
open HomReasoning
|
||||
open MR C
|
||||
open M C
|
||||
```
|
||||
|
||||
# Properties of algebras
|
||||
|
@ -144,3 +155,116 @@ This file contains some typedefs and records concerning different algebras.
|
|||
where
|
||||
open Functor elgot-to-uniformF
|
||||
open Functor (FO⇒Functor elgotForgetfulF free-elgots) using () renaming (F₀ to FO₀; F₁ to FO₁)
|
||||
|
||||
|
||||
|
||||
## **D**-Algebra + Search-Algebra ⇒ Elgot algebra
|
||||
```agda
|
||||
Search⇒Uniform : (D : DelayM) → Search-Algebra D → Uniform-Iteration-Algebra
|
||||
Search⇒Uniform D S = record
|
||||
{ A = A
|
||||
; algebra = record
|
||||
{ _# = λ {X} f → α ∘ coit f
|
||||
; #-Fixpoint = λ {X} {f} → begin
|
||||
α ∘ coit f ≈⟨ intro-center (_≅_.isoˡ out-≅) ⟩
|
||||
α ∘ (out⁻¹ ∘ out) ∘ coit f ≈⟨ (refl⟩∘⟨ ((sym +-g-η) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
||||
α ∘ ([ now , later ] ∘ out) ∘ coit f ≈⟨ pullˡ (pullˡ ∘[]) ⟩
|
||||
([ α ∘ now , α ∘ later ] ∘ out) ∘ coit f ≈⟨ ([]-cong₂ identity₁ identity₂ ⟩∘⟨refl ⟩∘⟨refl) ⟩
|
||||
([ idC , α ] ∘ out) ∘ coit f ≈⟨ pullʳ (coit-commutes f) ⟩
|
||||
[ idC , α ] ∘ (idC +₁ coit f) ∘ f ≈⟨ pullˡ []∘+₁ ⟩
|
||||
[ idC ∘ idC , α ∘ coit f ] ∘ f ≈⟨ (([]-cong₂ identity² refl) ⟩∘⟨refl) ⟩
|
||||
[ idC , α ∘ coit f ] ∘ f ∎
|
||||
; #-Uniformity = λ {X} {Y} {f} {g} {h} eq → begin
|
||||
α ∘ coit f ≈⟨ sym (pullʳ (sym (Terminal.!-unique (coalgebras A) (record { f = coit g ∘ h ; commutes = begin
|
||||
out ∘ coit g ∘ h ≈⟨ pullˡ (coit-commutes g) ⟩
|
||||
((idC +₁ coit g) ∘ g) ∘ h ≈⟨ pullʳ (sym eq) ⟩
|
||||
(idC +₁ coit g) ∘ (idC +₁ h) ∘ f ≈⟨ pullˡ +₁∘+₁ ⟩
|
||||
(idC ∘ idC +₁ coit g ∘ h) ∘ f ≈⟨ ((+₁-cong₂ identity² refl) ⟩∘⟨refl) ⟩
|
||||
(idC +₁ coit g ∘ h) ∘ f ∎ })))) ⟩
|
||||
(α ∘ coit g) ∘ h ∎
|
||||
; #-resp-≈ = λ {X} {f} {g} eq → refl⟩∘⟨ coit-resp-≈ eq
|
||||
}
|
||||
}
|
||||
where
|
||||
open Search-Algebra S
|
||||
open DelayM D
|
||||
|
||||
-- TODO use IsElgot
|
||||
D-Algebra+Search⇒Elgot : (D : DelayM) → (mod : Module (DelayM.monad D)) → IsSearchAlgebra D (Module.action mod) → Elgot-Algebra
|
||||
D-Algebra+Search⇒Elgot D mod search = record { A = A ; algebra = record
|
||||
{ _# = _#
|
||||
; #-Fixpoint = #-Fixpoint
|
||||
; #-Uniformity = #-Uniformity
|
||||
; #-Folding = #-Folding'
|
||||
; #-resp-≈ = #-resp-≈
|
||||
} }
|
||||
where
|
||||
open Module mod using (A) renaming (action to α; commute to D-commute)
|
||||
open DelayM D
|
||||
open IsSearchAlgebra search using ()
|
||||
open Uniform-Iteration-Algebra (Search⇒Uniform D (IsSearchAlgebra⇒Search-Algebra D α search)) using (_#; #-Fixpoint; #-Uniformity; #-resp-≈)
|
||||
#-Folding' : ∀ {X Y : Obj} {f : X ⇒ A + X} {h : Y ⇒ X + Y} → α ∘ DelayM.coit D (α ∘ DelayM.coit D f +₁ h) ≈ α ∘ DelayM.coit D [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]
|
||||
#-Folding' {X} {Y} {f} {h} =
|
||||
begin
|
||||
α ∘ coit (α ∘ coit f +₁ h) ≈⟨ refl⟩∘⟨ (coit-resp-≈ (sym (+₁∘+₁ ○ +₁-cong₂ refl identityˡ))) ⟩
|
||||
α ∘ coit ((α +₁ idC) ∘ (coit f +₁ h)) ≈⟨ refl⟩∘⟨ sym (helper''' (coit f +₁ h) α) ⟩
|
||||
α ∘ extend (now ∘ α) ∘ coit (coit f +₁ h) ≈⟨ pullˡ D-commute ⟩
|
||||
(α ∘ extend idC) ∘ coit (coit f +₁ h) ≈⟨ pullʳ (sym ([]-unique goal₁ goal₂)) ⟩
|
||||
α ∘ [ coit f , coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈⟨ ∘[] ⟩
|
||||
[ α ∘ coit f , α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈⟨ sym ([]-cong₂ (sym #-Fixpoint) refl) ⟩
|
||||
[ [ idC , α ∘ coit f ] ∘ f , α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈⟨ sym ([]-cong₂ (([]-cong₂ identity² (assoc ○ helper'')) ⟩∘⟨refl) assoc) ⟩
|
||||
[ [ idC ∘ idC , (α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ i₁ ] ∘ f , (α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ h ] ≈⟨ sym ([]-cong₂ (pullˡ []∘+₁) (pullˡ inject₂)) ⟩
|
||||
[ [ idC , (α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ] ∘ (idC +₁ i₁) ∘ f , [ idC , (α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ] ∘ i₂ ∘ h ] ≈⟨ sym ∘[] ⟩
|
||||
[ idC , (α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ] ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ≈⟨ sym #-Fixpoint ⟩
|
||||
α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∎
|
||||
-- refl⟩∘⟨ Terminal.!-unique (coalgebras A) (record { f = coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ; commutes = begin
|
||||
-- out ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ≈⟨ coit-commutes [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ⟩
|
||||
-- (idC +₁ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ≈⟨ ∘[] ⟩
|
||||
-- [ (idC +₁ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ (idC +₁ i₁) ∘ f , (idC +₁ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ i₂ ∘ h ] ≈⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ +₁∘i₂) ⟩
|
||||
-- [ (idC ∘ idC +₁ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₁) ∘ f , (i₂ ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ h ] ≈⟨ []-cong₂ ((+₁-cong₂ identity² refl) ⟩∘⟨refl) assoc ⟩
|
||||
-- [ (idC +₁ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₁) ∘ f , i₂ ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈⟨ []-cong₂ helper refl ⟩
|
||||
-- (α ∘ coit f +₁ (coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ h) ≈⟨ sym (+₁-cong₂ identityˡ refl) ⟩
|
||||
-- (idC ∘ α ∘ coit f +₁ (coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ h) ≈⟨ sym +₁∘+₁ ⟩
|
||||
-- (idC +₁ (coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])) ∘ (α ∘ coit f +₁ h) ∎ })
|
||||
where
|
||||
helper'' : α ∘ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₁ ≈ α ∘ coit f
|
||||
helper'' = sym-assoc ○ sym (#-Uniformity (sym inject₁))
|
||||
open RMonad (DelayM.kleisli D) using (extend)
|
||||
helper''' : ∀ {X B A} (e : X ⇒ B + X) (g : B ⇒ A) → extend (now ∘ g) ∘ coit e ≈ coit ((g +₁ idC) ∘ e)
|
||||
helper''' {X} {B} {A} e g = sym (Terminal.!-unique (coalgebras A) (record { f = extend (now ∘ g) ∘ coit e ; commutes = begin
|
||||
out ∘ extend (now ∘ g) ∘ coit e ≈⟨ pullˡ (extendlaw (now ∘ g)) ⟩
|
||||
([ out ∘ now ∘ g , i₂ ∘ extend (now ∘ g) ] ∘ out) ∘ coit e ≈⟨ pullʳ (coit-commutes e) ⟩
|
||||
[ out ∘ now ∘ g , i₂ ∘ extend (now ∘ g) ] ∘ (idC +₁ coit e) ∘ e ≈⟨ ([]-cong₂ (pullˡ unitlaw) refl) ⟩∘⟨refl ⟩
|
||||
(g +₁ extend (now ∘ g)) ∘ (idC +₁ coit e) ∘ e ≈⟨ pullˡ +₁∘+₁ ⟩
|
||||
(g ∘ idC +₁ extend (now ∘ g) ∘ coit e) ∘ e ≈⟨ (+₁-cong₂ id-comm (sym identityʳ)) ⟩∘⟨refl ⟩
|
||||
((idC ∘ g +₁ (extend (now ∘ g) ∘ coit e) ∘ idC)) ∘ e ≈⟨ sym (pullˡ +₁∘+₁) ⟩
|
||||
(idC +₁ extend (now ∘ g) ∘ coit e) ∘ (g +₁ idC) ∘ e ∎ }))
|
||||
goal₁ : (extend idC ∘ coit (coit f +₁ h)) ∘ i₁ ≈ coit f
|
||||
goal₁ = sym (Terminal.!-unique (coalgebras A) (record { f = (extend idC ∘ coit (coit f +₁ h)) ∘ i₁ ; commutes = begin
|
||||
out ∘ (extend idC ∘ coit (coit f +₁ h)) ∘ i₁ ≈⟨ pullˡ (pullˡ (extendlaw idC)) ⟩
|
||||
(([ out ∘ idC , i₂ ∘ extend idC ] ∘ out) ∘ coit (coit f +₁ h)) ∘ i₁ ≈⟨ (pullʳ (coit-commutes (coit f +₁ h))) ⟩∘⟨refl ⟩
|
||||
([ out ∘ idC , i₂ ∘ extend idC ] ∘ (idC +₁ coit (coit f +₁ h)) ∘ (coit f +₁ h)) ∘ i₁ ≈⟨ (pullˡ []∘+₁) ⟩∘⟨refl ⟩
|
||||
([ (out ∘ idC) ∘ idC , (i₂ ∘ extend idC) ∘ coit (coit f +₁ h) ] ∘ (coit f +₁ h)) ∘ i₁ ≈⟨ pullʳ +₁∘i₁ ⟩
|
||||
[ (out ∘ idC) ∘ idC , (i₂ ∘ extend idC) ∘ coit (coit f +₁ h) ] ∘ i₁ ∘ coit f ≈⟨ pullˡ inject₁ ⟩
|
||||
((out ∘ idC) ∘ idC) ∘ coit f ≈⟨ (identityʳ ○ identityʳ) ⟩∘⟨refl ⟩
|
||||
out ∘ coit f ≈⟨ coit-commutes f ⟩
|
||||
(idC +₁ coit f) ∘ f ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
(idC +₁ (extend idC ∘ coit (coit f +₁ h)) ∘ i₁) ∘ f ∎ }))
|
||||
goal₂ : (extend idC ∘ coit (coit f +₁ h)) ∘ i₂ ≈ coit [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h
|
||||
goal₂ = {! !}
|
||||
|
||||
{-
|
||||
NOTES:
|
||||
From D-module we get:
|
||||
1. commute: α ∘ (now ∘ α)* ≈ α ∘ id*
|
||||
2. identity: α ∘ now ≈ id
|
||||
From Search:
|
||||
1. identity₁ : α ∘ now ≈ id
|
||||
2. identity² α ∘ later ≈ α
|
||||
From Uniform:
|
||||
1. Fixpoint: α ∘ coit f ≈ [ idC , α ∘ coit f ] ∘ f
|
||||
2. Uniformity: α ∘ coit f ≈ (α ∘ coit g) ∘ h iff g ∘ h ≈ (idC +₁ h) ∘ f
|
||||
|
||||
-}
|
||||
```
|
||||
|
|
|
@ -21,6 +21,11 @@ module Algebra.Search {o ℓ e} (ambient : Ambient o ℓ e) where
|
|||
module _ (D : DelayM) where
|
||||
open DelayM D
|
||||
|
||||
record IsSearchAlgebra {A : Obj} (α : F-Algebra-on functor A) : Set (ℓ ⊔ e) where
|
||||
field
|
||||
identity₁ : α ∘ now ≈ idC
|
||||
identity₂ : α ∘ ▷ ≈ α
|
||||
|
||||
record Search-Algebra-on (A : Obj) : Set (ℓ ⊔ e) where
|
||||
field
|
||||
α : F-Algebra-on functor A
|
||||
|
@ -34,4 +39,8 @@ module Algebra.Search {o ℓ e} (ambient : Ambient o ℓ e) where
|
|||
A : Obj
|
||||
search-algebra-on : Search-Algebra-on A
|
||||
open Search-Algebra-on search-algebra-on public
|
||||
|
||||
IsSearchAlgebra⇒Search-Algebra : ∀ {A} (α : F-Algebra-on functor A) → IsSearchAlgebra α → Search-Algebra
|
||||
IsSearchAlgebra⇒Search-Algebra {A} α is = record { A = A ; search-algebra-on = record { α = α ; identity₁ = identity₁ ; identity₂ = identity₂ } }
|
||||
where open IsSearchAlgebra is
|
||||
```
|
56
src/Misc/FreeObject.lagda.md
Normal file
56
src/Misc/FreeObject.lagda.md
Normal file
|
@ -0,0 +1,56 @@
|
|||
<!--
|
||||
```agda
|
||||
open import Level
|
||||
open import Categories.Category
|
||||
open import Categories.Functor
|
||||
```
|
||||
-->
|
||||
|
||||
```agda
|
||||
module Misc.FreeObject where
|
||||
private
|
||||
variable
|
||||
o ℓ e o' ℓ' e' : Level
|
||||
```
|
||||
|
||||
# Free objects
|
||||
The notion of free object has been formalized in agda-categories:
|
||||
|
||||
```agda
|
||||
open import Categories.FreeObjects.Free
|
||||
```
|
||||
|
||||
but we need a predicate expressing that an object 'is free':
|
||||
|
||||
```agda
|
||||
record IsFreeObject {C : Category o ℓ e} {D : Category o' ℓ' e'} (U : Functor D C) (X : Category.Obj C) (FX : Category.Obj D) : Set (suc (e ⊔ e' ⊔ o ⊔ ℓ ⊔ o' ⊔ ℓ')) where
|
||||
|
||||
private
|
||||
module C = Category C using (Obj; id; identityʳ; identityˡ; _⇒_; _∘_; equiv; module Equiv)
|
||||
module D = Category D using (Obj; _⇒_; _∘_; equiv)
|
||||
module U = Functor U using (₀; ₁)
|
||||
|
||||
field
|
||||
η : C [ X , U.₀ FX ]
|
||||
_* : ∀ {A : D.Obj} → C [ X , U.₀ A ] → D [ FX , A ]
|
||||
*-lift : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) → C [ (U.₁ (f *) C.∘ η) ≈ f ]
|
||||
*-uniq : ∀ {A : D.Obj} (f : C [ X , U.₀ A ]) (g : D [ FX , A ]) → C [ (U.₁ g) C.∘ η ≈ f ] → D [ g ≈ f * ]
|
||||
```
|
||||
|
||||
and some way to convert between these notions:
|
||||
|
||||
```agda
|
||||
IsFreeObject⇒FreeObject : ∀ {C : Category o ℓ e} {D : Category o' ℓ' e'} (U : Functor D C) (X : Category.Obj C) (FX : Category.Obj D) → IsFreeObject U X FX → FreeObject U X
|
||||
IsFreeObject⇒FreeObject U X FX isFO = record
|
||||
{ FX = FX
|
||||
; η = η
|
||||
; _* = _*
|
||||
; *-lift = *-lift
|
||||
; *-uniq = *-uniq
|
||||
}
|
||||
where open IsFreeObject isFO
|
||||
|
||||
-- TODO FreeObject⇒IsFreeObject
|
||||
|
||||
```
|
||||
|
|
@ -88,6 +88,12 @@ Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use the fina
|
|||
|
||||
coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f
|
||||
coit-commutes f = commutes (! {A = record { A = Y ; α = f }})
|
||||
|
||||
coit-resp-≈ : ∀ {f g : Y ⇒ X + Y} → f ≈ g → coit f ≈ coit g
|
||||
coit-resp-≈ {f} {g} eq = Terminal.!-unique (coalgebras X) (record { f = coit g ; commutes = begin
|
||||
out ∘ coit g ≈⟨ coit-commutes g ⟩
|
||||
(idC +₁ coit g) ∘ g ≈⟨ (refl⟩∘⟨ sym eq) ⟩
|
||||
(idC +₁ coit g) ∘ f ∎ })
|
||||
```
|
||||
|
||||
Furthermore if we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
|
||||
|
|
127
src/Monad/Instance/Delay/Properties.lagda.md
Normal file
127
src/Monad/Instance/Delay/Properties.lagda.md
Normal file
|
@ -0,0 +1,127 @@
|
|||
<!--
|
||||
```agda
|
||||
open import Level
|
||||
open import Categories.Functor
|
||||
open import Category.Instance.AmbientCategory using (Ambient)
|
||||
open import Categories.Monad
|
||||
open import Categories.Monad.Construction.Kleisli
|
||||
open import Categories.Monad.Relative renaming (Monad to RMonad)
|
||||
open import Data.Product using (_,_; Σ; Σ-syntax)
|
||||
open import Categories.Functor.Algebra
|
||||
open import Categories.Functor.Coalgebra
|
||||
open import Categories.Object.Terminal
|
||||
open import Categories.NaturalTransformation.Core
|
||||
open import Misc.FreeObject
|
||||
```
|
||||
-->
|
||||
|
||||
```agda
|
||||
module Monad.Instance.Delay.Properties {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||
open Ambient ambient
|
||||
open import Categories.Diagram.Coequalizer C
|
||||
open import Monad.Instance.Delay ambient
|
||||
open import Algebra.Search ambient
|
||||
open import Algebra.ElgotAlgebra ambient
|
||||
open import Algebra.Properties ambient
|
||||
open F-Coalgebra-Morphism using () renaming (f to u; commutes to coalg-commutes)
|
||||
open import Monad.Instance.Delay.Quotienting ambient
|
||||
```
|
||||
|
||||
# Properties of the quotiented delay monad
|
||||
|
||||
```agda
|
||||
module _ (D : DelayM) where
|
||||
open DelayM D renaming (functor to D-Functor; monad to D-Monad; kleisli to D-Kleisli)
|
||||
|
||||
open Functor D-Functor using () renaming (F₁ to D₁; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈; identity to D-identity)
|
||||
open RMonad D-Kleisli using (extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ; identityˡ to k-identityˡ)
|
||||
open Monad D-Monad using () renaming (assoc to M-assoc; identityʳ to M-identityʳ)
|
||||
open HomReasoning
|
||||
open M C
|
||||
open MR C
|
||||
open Equiv
|
||||
|
||||
module _ (coeqs : ∀ X → Coequalizer (extend (ι {X})) (D₁ π₁)) where
|
||||
open Quotiented D coeqs
|
||||
|
||||
cond-1 : Set (o ⊔ ℓ ⊔ e)
|
||||
cond-1 = ∀ X → preserves D-Functor (coeqs X)
|
||||
|
||||
-- cond-2' : Set (o ⊔ ℓ ⊔ e)
|
||||
-- cond-2' = ∀ X → Σ[ s-alg-on ∈ Search-Algebra-on D (Ď₀ X) ] is-F-Algebra-Morphism {F = D-Functor} (record { A = D₀ X ; α = μ.η X }) (record { A = Ď₀ X ; α = Search-Algebra-on.α s-alg-on }) (ρ {X})
|
||||
record cond-2' (X : Obj) : Set (o ⊔ ℓ ⊔ e) where
|
||||
field
|
||||
s-alg-on : Search-Algebra-on D (Ď₀ X)
|
||||
ρ-algebra-morphism : is-F-Algebra-Morphism {F = D-Functor} (record { A = D₀ X ; α = μ.η X }) (record { A = Ď₀ X ; α = Search-Algebra-on.α s-alg-on }) (ρ {X})
|
||||
cond-2 = ∀ X → cond-2' X
|
||||
|
||||
|
||||
record cond-3' (X : Obj) : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
||||
-- Ď₀ X is stable free elgot algebra
|
||||
field
|
||||
elgot : Elgot-Algebra-on (Ď₀ X)
|
||||
elgot-alg = record { A = Ď₀ X ; algebra = elgot }
|
||||
|
||||
open Elgot-Algebra-on elgot
|
||||
field
|
||||
isFO : IsFreeObject elgotForgetfulF X elgot-alg
|
||||
freeobject = IsFreeObject⇒FreeObject elgotForgetfulF X elgot-alg isFO
|
||||
field
|
||||
isStable : IsStableFreeElgotAlgebra freeobject
|
||||
|
||||
-- ρ is D-algebra morphism
|
||||
field
|
||||
ρ-algebra-morphism : is-F-Algebra-Morphism {F = D-Functor} (record { A = D₀ X ; α = μ.η X }) (record { A = Ď₀ X ; α = out # }) (ρ {X})
|
||||
ρ-law : ρ ≈ ((ρ ∘ now +₁ idC) ∘ out) #
|
||||
cond-3 = ∀ X → cond-3' X
|
||||
|
||||
record cond-4 : Set (o ⊔ ℓ ⊔ e) where
|
||||
|
||||
2⇒3 : cond-2 → cond-3
|
||||
2⇒3 c-2 X = record
|
||||
{ elgot = {! !}
|
||||
; isFO = {! !}
|
||||
; isStable = {! !}
|
||||
; ρ-algebra-morphism = {! !}
|
||||
; ρ-law = {! !}
|
||||
}
|
||||
|
||||
1⇒2 : cond-1 → cond-2
|
||||
1⇒2 c-1 X = record { s-alg-on = s-alg-on ; ρ-algebra-morphism = begin ρ ∘ μ.η X ≈⟨ D-universal ⟩ Search-Algebra-on.α s-alg-on ∘ D₁ ρ ∎ }
|
||||
where
|
||||
open Coequalizer (coeqs X) renaming (universal to coeq-universal)
|
||||
open IsCoequalizer (c-1 X) using () renaming (equality to D-equality; coequalize to D-coequalize; universal to D-universal; unique to D-unique)
|
||||
s-alg-on : Search-Algebra-on D (Ď₀ X)
|
||||
s-alg-on = record
|
||||
{ α = α'
|
||||
; identity₁ = ρ-epi (α' ∘ now) idC (begin
|
||||
(α' ∘ now) ∘ ρ ≈⟨ pullʳ (η.commute ρ) ⟩
|
||||
α' ∘ D₁ ρ ∘ now ≈⟨ pullˡ (sym D-universal) ⟩
|
||||
(ρ ∘ μ.η X) ∘ now ≈⟨ cancelʳ M-identityʳ ⟩
|
||||
ρ ≈⟨ sym identityˡ ⟩
|
||||
idC ∘ ρ ∎)
|
||||
; identity₂ = IsCoequalizer⇒Epi (c-1 X) (α' ∘ ▷) α' (begin
|
||||
(α' ∘ ▷) ∘ D₁ ρ ≈⟨ pullʳ (▷∘extend-comm (now ∘ ρ)) ⟩
|
||||
α' ∘ D₁ ρ ∘ ▷ ≈⟨ pullˡ (sym D-universal) ⟩
|
||||
(ρ ∘ μ.η X) ∘ ▷ ≈⟨ pullʳ (sym (▷∘extend-comm idC)) ⟩
|
||||
ρ ∘ ▷ ∘ extend idC ≈⟨ pullˡ ρ▷ ⟩
|
||||
ρ ∘ extend idC ≈⟨ D-universal ⟩
|
||||
α' ∘ D₁ ρ ∎)
|
||||
}
|
||||
where
|
||||
μ∘Dι : μ.η X ∘ D₁ ι ≈ extend ι
|
||||
μ∘Dι = sym k-assoc ○ extend-≈ (cancelˡ k-identityʳ)
|
||||
eq₁ : D₁ (extend ι) ≈ D₁ (μ.η X) ∘ D₁ (D₁ ι)
|
||||
eq₁ = sym (begin
|
||||
D₁ (μ.η X) ∘ D₁ (D₁ ι) ≈⟨ sym D-homomorphism ⟩
|
||||
D₁ (μ.η X ∘ D₁ ι) ≈⟨ D-resp-≈ μ∘Dι ⟩
|
||||
D₁ (extend ι) ∎)
|
||||
α' = D-coequalize {h = ρ {X} ∘ μ.η X} (begin
|
||||
(ρ ∘ μ.η X) ∘ D₁ (extend ι) ≈⟨ (refl⟩∘⟨ eq₁) ⟩
|
||||
(ρ ∘ μ.η X) ∘ D₁ (μ.η X) ∘ D₁ (D₁ ι) ≈⟨ pullʳ (pullˡ M-assoc) ⟩
|
||||
ρ ∘ (μ.η X ∘ μ.η (D₀ X)) ∘ D₁ (D₁ ι) ≈⟨ (refl⟩∘⟨ pullʳ (μ.commute ι)) ⟩
|
||||
ρ ∘ μ.η X ∘ (D₁ ι) ∘ μ.η (X × N) ≈⟨ (refl⟩∘⟨ pullˡ μ∘Dι) ⟩
|
||||
ρ ∘ extend ι ∘ μ.η (X × N) ≈⟨ pullˡ equality ⟩
|
||||
(ρ ∘ D₁ π₁) ∘ μ.η (X × N) ≈⟨ (pullʳ (sym (μ.commute π₁)) ○ sym-assoc) ⟩
|
||||
(ρ ∘ μ.η X) ∘ D₁ (D₁ π₁) ∎)
|
||||
```
|
|
@ -13,6 +13,7 @@ open import Categories.Functor.Algebra
|
|||
open import Categories.Functor.Coalgebra
|
||||
open import Categories.Object.Terminal
|
||||
open import Categories.NaturalTransformation.Core
|
||||
open import Misc.FreeObject
|
||||
```
|
||||
-->
|
||||
|
||||
|
@ -22,6 +23,8 @@ module Monad.Instance.Delay.Quotienting {o ℓ e} (ambient : Ambient o ℓ e) wh
|
|||
open import Categories.Diagram.Coequalizer C
|
||||
open import Monad.Instance.Delay ambient
|
||||
open import Algebra.Search ambient
|
||||
open import Algebra.ElgotAlgebra ambient
|
||||
open import Algebra.Properties ambient
|
||||
open F-Coalgebra-Morphism using () renaming (f to u; commutes to coalg-commutes)
|
||||
```
|
||||
|
||||
|
@ -64,7 +67,7 @@ We will now show that the following conditions are equivalent:
|
|||
open MR C
|
||||
open Equiv
|
||||
|
||||
module _ (coeqs : ∀ X → Coequalizer (extend (ι {X})) (D₁ π₁)) where
|
||||
module Quotiented (coeqs : ∀ X → Coequalizer (extend (ι {X})) (D₁ π₁)) where
|
||||
|
||||
Ď₀ : Obj → Obj
|
||||
Ď₀ X = Coequalizer.obj (coeqs X)
|
||||
|
@ -188,55 +191,4 @@ We will now show that the following conditions are equivalent:
|
|||
{ η = λ X → ρ {X}
|
||||
; commute = λ {X} {Y} f → Coequalizer.universal (coeqs X)
|
||||
})
|
||||
|
||||
cond-1 : Set (o ⊔ ℓ ⊔ e)
|
||||
cond-1 = ∀ X → preserves D-Functor (coeqs X)
|
||||
|
||||
cond-2 : Set (o ⊔ ℓ ⊔ e)
|
||||
cond-2 = ∀ X → Σ[ s-alg-on ∈ Search-Algebra-on D (Ď₀ X) ] is-F-Algebra-Morphism {F = D-Functor} (record { A = D₀ X ; α = μ.η X }) (record { A = Ď₀ X ; α = Search-Algebra-on.α s-alg-on }) (ρ {X})
|
||||
|
||||
cond-3 : Set (o ⊔ ℓ ⊔ e)
|
||||
cond-3 = {! !}
|
||||
|
||||
cond-4 : Set (o ⊔ ℓ ⊔ e)
|
||||
cond-4 = {! !}
|
||||
|
||||
1⇒2 : cond-1 → cond-2
|
||||
1⇒2 c-1 X = s-alg-on , (begin ρ ∘ μ.η X ≈⟨ D-universal ⟩ Search-Algebra-on.α s-alg-on ∘ D₁ ρ ∎)
|
||||
where
|
||||
open Coequalizer (coeqs X) renaming (universal to coeq-universal)
|
||||
open IsCoequalizer (c-1 X) using () renaming (equality to D-equality; coequalize to D-coequalize; universal to D-universal; unique to D-unique)
|
||||
s-alg-on : Search-Algebra-on D (Ď₀ X)
|
||||
s-alg-on = record
|
||||
{ α = α'
|
||||
; identity₁ = ρ-epi (α' ∘ now) idC (begin
|
||||
(α' ∘ now) ∘ ρ ≈⟨ pullʳ (η.commute ρ) ⟩
|
||||
α' ∘ D₁ ρ ∘ now ≈⟨ pullˡ (sym D-universal) ⟩
|
||||
(ρ ∘ μ.η X) ∘ now ≈⟨ cancelʳ M-identityʳ ⟩
|
||||
ρ ≈⟨ sym identityˡ ⟩
|
||||
idC ∘ ρ ∎)
|
||||
; identity₂ = IsCoequalizer⇒Epi (c-1 X) (α' ∘ ▷) α' (begin
|
||||
(α' ∘ ▷) ∘ D₁ ρ ≈⟨ pullʳ (▷∘extend-comm (now ∘ ρ)) ⟩
|
||||
α' ∘ D₁ ρ ∘ ▷ ≈⟨ pullˡ (sym D-universal) ⟩
|
||||
(ρ ∘ μ.η X) ∘ ▷ ≈⟨ pullʳ (sym (▷∘extend-comm idC)) ⟩
|
||||
ρ ∘ ▷ ∘ extend idC ≈⟨ pullˡ ρ▷ ⟩
|
||||
ρ ∘ extend idC ≈⟨ D-universal ⟩
|
||||
α' ∘ D₁ ρ ∎)
|
||||
}
|
||||
where
|
||||
μ∘Dι : μ.η X ∘ D₁ ι ≈ extend ι
|
||||
μ∘Dι = sym k-assoc ○ extend-≈ (cancelˡ k-identityʳ)
|
||||
eq₁ : D₁ (extend ι) ≈ D₁ (μ.η X) ∘ D₁ (D₁ ι)
|
||||
eq₁ = sym (begin
|
||||
D₁ (μ.η X) ∘ D₁ (D₁ ι) ≈⟨ sym D-homomorphism ⟩
|
||||
D₁ (μ.η X ∘ D₁ ι) ≈⟨ D-resp-≈ μ∘Dι ⟩
|
||||
D₁ (extend ι) ∎)
|
||||
α' = D-coequalize {h = ρ {X} ∘ μ.η X} (begin
|
||||
(ρ ∘ μ.η X) ∘ D₁ (extend ι) ≈⟨ (refl⟩∘⟨ eq₁) ⟩
|
||||
(ρ ∘ μ.η X) ∘ D₁ (μ.η X) ∘ D₁ (D₁ ι) ≈⟨ pullʳ (pullˡ M-assoc) ⟩
|
||||
ρ ∘ (μ.η X ∘ μ.η (D₀ X)) ∘ D₁ (D₁ ι) ≈⟨ (refl⟩∘⟨ pullʳ (μ.commute ι)) ⟩
|
||||
ρ ∘ μ.η X ∘ (D₁ ι) ∘ μ.η (X × N) ≈⟨ (refl⟩∘⟨ pullˡ μ∘Dι) ⟩
|
||||
ρ ∘ extend ι ∘ μ.η (X × N) ≈⟨ pullˡ equality ⟩
|
||||
(ρ ∘ D₁ π₁) ∘ μ.η (X × N) ≈⟨ (pullʳ (sym (μ.commute π₁)) ○ sym-assoc) ⟩
|
||||
(ρ ∘ μ.η X) ∘ D₁ (D₁ π₁) ∎)
|
||||
```
|
|
@ -11,6 +11,7 @@ open import Categories.Monad
|
|||
open import Categories.Monad.Strong
|
||||
open import Category.Instance.AmbientCategory using (Ambient)
|
||||
open import Categories.NaturalTransformation
|
||||
open import Categories.Object.Terminal
|
||||
-- open import Data.Product using (_,_; Σ; Σ-syntax)
|
||||
```
|
||||
-->
|
||||
|
@ -37,6 +38,7 @@ module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
|||
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
||||
|
||||
open Equiv
|
||||
open HomReasoning
|
||||
|
||||
```
|
||||
|
||||
|
@ -55,9 +57,6 @@ module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
|||
|
||||
K : Monad C
|
||||
K = adjoint⇒monad adjoint
|
||||
|
||||
-- EilenbergMoore⇒UniformIterationAlgebras : StrongEquivalence (EilenbergMoore K) (Uniform-Iteration-Algebras D)
|
||||
-- EilenbergMoore⇒UniformIterationAlgebras = {! !}
|
||||
```
|
||||
|
||||
### *Proposition 19* If the algebras are stable then K is strong
|
||||
|
@ -78,11 +77,18 @@ module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
|||
KStrong = record
|
||||
{ M = K
|
||||
; strength = record
|
||||
{ strengthen = ntHelper (record { η = τ ; commute = λ f → {! !} })
|
||||
; identityˡ = {! !}
|
||||
; η-comm = {! !}
|
||||
; μ-η-comm = {! !}
|
||||
; strength-assoc = {! !}
|
||||
{ strengthen = ntHelper (record { η = τ ; commute = commute' })
|
||||
; identityˡ = λ {X} → begin
|
||||
K₁ π₂ ∘ τ _ ≈⟨ refl ⟩
|
||||
Uniform-Iteration-Algebra-Morphism.h ((algebras (Terminal.⊤ terminal × X) FreeObject.*) (FreeObject.η (algebras X) ∘ π₂)) ∘ τ _ ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
π₂ ∎
|
||||
; η-comm = λ {A} {B} → begin τ _ ∘ (idC ⁂ η (A , B) B) ≈⟨ τ-η (A , B) ⟩ η (A , B) (A × B) ∎
|
||||
; μ-η-comm = λ {A} {B} → {! !}
|
||||
; strength-assoc = λ {A} {B} {D} → begin
|
||||
K₁ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∘ τ _ ≈⟨ {! !} ⟩
|
||||
τ _ ∘ (idC ⁂ τ _) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∎
|
||||
}
|
||||
}
|
||||
where
|
||||
|
@ -107,4 +113,12 @@ module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where
|
|||
|
||||
τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ [ FreeObject.FX (algebras Y) , h ]#) ≈ [ FreeObject.FX (algebras (X × Y)) , (τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ]#
|
||||
τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X , Y) (X × Y)) h
|
||||
|
||||
commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_,_] (CProduct C C) P₁ P₂)
|
||||
→ τ P₂ ∘ ((fst fg) ⁂ K₁ (snd fg)) ≈ K₁ ((fst fg) ⁂ (snd fg)) ∘ τ P₁
|
||||
commute' {(U , V)} {(W , X)} (f , g) = begin
|
||||
τ _ ∘ (f ⁂ Uniform-Iteration-Algebra-Morphism.h ((algebras V FreeObject.*) (FreeObject.η (algebras X) ∘ g))) ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
{! !} ≈⟨ {! !} ⟩
|
||||
Uniform-Iteration-Algebra-Morphism.h ((algebras (U × V) FreeObject.*) (FreeObject.η (algebras (W × X)) ∘ (f ⁂ g))) ∘ τ _ ∎
|
||||
```
|
||||
|
|
Loading…
Reference in a new issue