work on proof

This commit is contained in:
Leon Vatthauer 2023-11-24 09:02:03 +01:00
parent 000d958aab
commit c7f9ccf05a
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -210,6 +210,20 @@ KCommutative = record { commutes = commutes' }
(idC +₁ (idC ⁂ h #)) ∘ ((ψ ∘ (idC ⁂ h #)) +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC) ∎
comm₈ : ∀ {U} (g : U ⇒ K.₀ X + U) → ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∘ (g # ⁂ idC) ≈ ((((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC))#
comm₈ {U} g = begin
((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ (g # ⁂ idC) ≈⟨ στ ⟩
extend ψ ∘ extend (σ _) ∘ τ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ ((η _ +₁ idC) ∘ h) #) ≈⟨ {! !} ⟩ -- lemma 42
extend ψ ∘ extend (τ _) ∘ σ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ ((η _ +₁ idC) ∘ h) #) ≈⟨ sym τσ ⟩
((((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC))# ∎
where
τσ : ((((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC))# ≈ extend ψ ∘ extend (τ _) ∘ σ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ ((η _ +₁ idC) ∘ h) #)
τσ = begin
(((((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC))#) ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
extend ψ ∘ extend (τ _) ∘ σ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ ((η _ +₁ idC) ∘ h) #) ∎
στ : ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ (g # ⁂ idC) ≈ extend ψ ∘ extend (σ _) ∘ τ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ ((η _ +₁ idC) ∘ h) #)
στ = begin
((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ (g # ⁂ idC) ≈⟨ sym (#-Uniformity (algebras (X × Y)) (sym by-uni)) ⟩
((ψ ∘ ((g #) ⁂ idC) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ (ψ-left-iter g) refl) ⟩∘⟨refl) ⟩
(((((ψ +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC)) # +₁ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈˘⟨ #-resp-≈ (algebras _) (pullˡ (+₁∘+₁ ○ +₁-cong₂ kleisliK.identityʳ identity²)) ⟩
@ -223,12 +237,9 @@ KCommutative = record { commutes = commutes' }
extend ψ ∘ extend (((σ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ ((η (K.₀ X) +₁ idC) ⁂ idC) ∘ (g ⁂ idC)) #) ∘ τ _ ∘ (idC ⁂ ((η _ +₁ idC) ∘ h) #) ≈⟨ refl⟩∘⟨ (kleisliK.extend-≈ (#-resp-≈ (algebras _) (refl⟩∘⟨ (refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²))))) ⟩∘⟨refl ⟩
extend ψ ∘ extend (((σ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ ((η (K.₀ X) +₁ idC) ∘ g ⁂ idC)) #) ∘ τ _ ∘ (idC ⁂ ((η _ +₁ idC) ∘ h) #) ≈˘⟨ refl⟩∘⟨ ((kleisliK.extend-≈ (σ-comm ((η (K.₀ X) +₁ idC) ∘ g))) ⟩∘⟨refl) ⟩
extend ψ ∘ extend (σ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ idC)) ∘ τ _ ∘ (idC ⁂ ((η _ +₁ idC) ∘ h) #) ≈˘⟨ refl⟩∘⟨ (pullˡ (extend∘F₁ monadK (σ _) (((η _ +₁ idC) ∘ g) # ⁂ idC))) ⟩
extend ψ ∘ extend (σ _) ∘ K.₁ (((η _ +₁ idC) ∘ g) # ⁂ idC) ∘ τ _ ∘ (idC ⁂ ((η _ +₁ idC) ∘ h) #) ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! extend ψ ∘ extend (σ _) ∘ τ _ ∘ K.₁ (((η _ +₁ idC) ∘ g) # ⁂ idC) ∘ τ _ ∘ (idC ⁂ ((η _ +₁ idC) ∘ h) #) !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
((((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# +₁ idC) ∘ distributeʳ⁻¹ ∘ (g ⁂ idC))# ∎
extend ψ ∘ extend (σ _) ∘ K.₁ (((η _ +₁ idC) ∘ g) # ⁂ idC) ∘ τ _ ∘ (idC ⁂ ((η _ +₁ idC) ∘ h) #) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym (strengthen.commute (((η (K.₀ X) +₁ idC) ∘ g) # , idC))) ⟩
extend ψ ∘ extend (σ _) ∘ (τ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ K.₁ idC)) ∘ (idC ⁂ ((η _ +₁ idC) ∘ h) #) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ identityʳ (elimˡ monadK.F.identity))) ⟩
extend ψ ∘ extend (σ _) ∘ τ _ ∘ (((η _ +₁ idC) ∘ g) # ⁂ ((η _ +₁ idC) ∘ h) #) ∎
where
by-uni : ((ψ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ ((g #) ⁂ idC) ≈ (idC +₁ (g #) ⁂ idC) ∘ (ψ ∘ ((g #) ⁂ idC) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)
by-uni = begin