🚧 Great progress on commutativity proof of delay monad

This commit is contained in:
Leon Vatthauer 2023-10-16 18:08:34 +02:00
parent 14c41b3666
commit cfd5bf4968
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
3 changed files with 97 additions and 71 deletions

View file

@ -65,6 +65,9 @@ module Category.Instance.AmbientCategory where
distributive = Extensive×Cartesian⇒Distributive C extensive cartesian
open Distributive distributive hiding (cartesian; cocartesian) public
open M' C
open HomReasoning
open MR' C
open Equiv
distributeˡ⁻¹ : ∀ {A B C : Obj} → A × (B + C) ⇒ A × B + A × C
distributeˡ⁻¹ = IsIso.inv isIsoˡ
@ -81,10 +84,22 @@ module Category.Instance.AmbientCategory where
[ swap ∘ (i₁ ⁂ idC) , swap ∘ (i₂ ⁂ idC) ] ∘ distributeʳ⁻¹ ≈⟨ sym ([]-cong₂ (sym swap∘⁂) (sym swap∘⁂) ⟩∘⟨refl) ⟩
[ (idC ⁂ i₁) ∘ swap , (idC ⁂ i₂) ∘ swap ] ∘ distributeʳ⁻¹ ≈⟨ sym (pullˡ []∘+₁) ⟩
distributeˡ ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ ∎)
where
open HomReasoning
open MR' C
open Equiv
dstr-law₁ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₁) ≈ i₁
dstr-law₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ))
dstr-law₂ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₂) ≈ i₂
dstr-law₂ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ))
dstr-law₃ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₁ ⁂ idC) ≈ i₁
dstr-law₃ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ))
dstr-law₄ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₂ ⁂ idC) ≈ i₂
dstr-law₄ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ))
distribute₂ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂
distribute₂ = sym (begin
π₂ ≈⟨ introʳ (IsIso.isoʳ isIsoˡ) ⟩
π₂ ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ pullˡ ∘[] ⟩
[ π₂ ∘ ((idC ⁂ i₁)) , π₂ ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎)
module M = M'
module MR = MR'
@ -99,10 +114,6 @@ module Category.Instance.AmbientCategory where
(distributeˡ⁻¹ ∘ [ ((f ⁂ (g +₁ h)) ∘ (idC ⁂ i₁)) , ((f ⁂ (g +₁ h)) ∘ (idC ⁂ i₂)) ]) ∘ distributeˡ⁻¹ ≈⟨ sym (pullˡ (pullʳ ∘[])) ⟩
(distributeˡ⁻¹ ∘ (f ⁂ (g +₁ h))) ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ sym (introʳ (IsIso.isoʳ isIsoˡ)) ⟩
distributeˡ⁻¹ ∘ (f ⁂ (g +₁ h)) ∎
where
open MR C
open HomReasoning
open Equiv
iso-epi-from : ∀ {X Y} → (iso : X ≅ Y) → Epi (_≅_.from iso)
iso-epi-from iso = λ f g eq → begin
@ -110,16 +121,10 @@ module Category.Instance.AmbientCategory where
(f ∘ M'._≅_.from iso ∘ M'._≅_.to iso) ≈⟨ pullˡ eq ⟩
((g ∘ M'._≅_.from iso) ∘ M'._≅_.to iso) ≈⟨ cancelʳ (_≅_.isoʳ iso) ⟩
g ∎
where
open HomReasoning
open MR C
iso-epi-to : ∀ {X Y} → (iso : X ≅ Y) → Epi (_≅_.to iso)
iso-epi-to iso = λ f g eq → begin
f ≈⟨ introʳ (_≅_.isoˡ iso) ⟩
(f ∘ M'._≅_.to iso ∘ M'._≅_.from iso) ≈⟨ pullˡ eq ⟩
((g ∘ M'._≅_.to iso) ∘ M'._≅_.from iso) ≈⟨ cancelʳ (_≅_.isoˡ iso) ⟩
g ∎
where
open HomReasoning
open MR C
```

View file

@ -15,6 +15,7 @@ open import Categories.Monad.Strong
open import Categories.Monad.Relative renaming (Monad to RMonad)
open import Categories.Monad.Construction.Kleisli
open import Categories.Object.Terminal
open import Categories.NaturalTransformation
```
-->
@ -40,10 +41,11 @@ module Monad.Instance.Delay.Commutative {o e} (ambient : Ambient o e) (D
open DelayM D
open import Monad.Instance.Delay.Strong ambient D
open Functor functor using () renaming (F₁ to D₁)
open RMonad kleisli using (extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ)
open Functor functor using () renaming (F₁ to D₁; identity to D-identity; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈)
open RMonad kleisli using (extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ; identityˡ to k-identityˡ)
open Monad monad using (η; μ)
open StrongMonad strongMonad using ()
-- open StrongMonad strongMonad using (strengthen)
open NaturalTransformation (StrongMonad.strengthen strongMonad) using () renaming (commute to τ-commute)
```
# The Delay Monad is commutative
@ -68,48 +70,78 @@ module Monad.Instance.Delay.Commutative {o e} (ambient : Ambient o e) (D
(((swap ∘ idC) ∘ swap +₁ (D₁ swap ∘ τ) ∘ swap) ∘ distributeʳ⁻¹) ∘ (out ⁂ idC) ≈⟨ ((+₁-cong₂ (identityʳ ⟩∘⟨refl ○ swap∘swap) assoc) ⟩∘⟨refl) ⟩∘⟨refl ⟩
((idC +₁ D₁ swap ∘ τ ∘ swap) ∘ distributeʳ⁻¹) ∘ (out ⁂ idC) ≈⟨ assoc ⟩
(idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) ∎ }
σ-helper : ∀ {X Y : Obj} → σ {X} {Y} ∘ (out⁻¹ ⁂ idC) ≈ out⁻¹ ∘ (idC +₁ σ) ∘ distributeʳ⁻¹
σ-helper {X} {Y} = begin
σ ∘ (out⁻¹ ⁂ idC) ≈⟨ introˡ (_≅_.isoˡ out-≅) ⟩
(out⁻¹ ∘ out) ∘ σ ∘ (out⁻¹ ⁂ idC) ≈⟨ pullʳ (pullˡ (u-commutes (σ-coalg X Y))) ⟩
out⁻¹ ∘ ((idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC)) ∘ (out⁻¹ ⁂ idC) ≈⟨ refl⟩∘⟨ (pullʳ (cancelʳ (⁂∘⁂ ○ ⁂-cong₂ (_≅_.isoʳ out-≅) identity² ○ ⟨⟩-unique id-comm id-comm))) ⟩
out⁻¹ ∘ (idC +₁ σ) ∘ distributeʳ⁻¹ ∎
commutes' : ∀ {X Y} → extend σ ∘ τ {D₀ X} {Y} ≈ extend τ ∘ σ
commutes' {X} {Y} = begin
extend σ ∘ τ ≈⟨ sym (!-unique (coalgebras (X × Y)) (record { f = extend σ ∘ τ ; commutes = begin
out ∘ extend σ ∘ τ ≈⟨ pullˡ (extendlaw σ) ⟩
([ out ∘ σ , i₂ ∘ extend σ ] ∘ out) ∘ τ ≈⟨ pullʳ (τ-law (D₀ X , Y)) ⟩
[ out ∘ σ , i₂ ∘ extend σ ] ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ pullˡ []∘+₁ ⟩
[ (out ∘ σ) ∘ idC , (i₂ ∘ extend σ) ∘ τ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ ([]-cong₂ (identityʳ ○ u-commutes (σ-coalg X Y)) assoc) ⟩∘⟨refl ⟩
[ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend σ ∘ τ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ((⁂-cong₂ (sym (_≅_.isoˡ out-≅)) refl) ○ sym (⁂-cong₂ refl identityˡ) ○ sym ⁂∘⁂) ⟩
[ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend σ ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out⁻¹ ⁂ idC) ∘ (out ⁂ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (⁂-cong₂ refl (sym ([]-unique id-comm-sym id-comm-sym))) ⟩∘⟨refl ⟩
[ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend σ ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out⁻¹ ⁂ (idC +₁ idC)) ∘ (out ⁂ out) ≈⟨ refl⟩∘⟨ pullˡ (sym (distribute₁ out⁻¹ idC idC)) ⟩
[ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend σ ∘ τ ] ∘ (((out⁻¹ ⁂ idC) +₁ (out⁻¹ ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (out ⁂ out) ≈⟨ pullˡ (pullˡ []∘+₁) ⟩
([ ((idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC)) ∘ (out⁻¹ ⁂ idC) , (i₂ ∘ extend σ ∘ τ) ∘ (out⁻¹ ⁂ idC) ] ∘ distributeˡ⁻¹) ∘ (out ⁂ out) ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
[ idC +₁ σ , i₂ ∘ [ τ , later ∘ extend σ ∘ τ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
(idC +₁ extend σ ∘ τ) ∘ {! !} ∎ })) ⟩
u (! (coalgebras (X × Y))) ≈⟨ {! !} ⟩
extend τ ∘ σ
commutes' {X} {Y} = guarded-unique g (extend σ ∘ τ) (extend τ ∘ σ) guarded (fixpoint-eq fixpoint₁) (fixpoint-eq fixpoint₂)
where
w = (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out)
g = out⁻¹ ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w
guarded : is-guarded g
guarded = [ idC +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w , (begin
(i₁ +₁ idC) ∘ [ idC +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈⟨ pullˡ ∘[] ⟩
[ (i₁ +₁ idC) ∘ (idC +₁ D₁ i₁ ∘ σ) , (i₁ +₁ idC) ∘ i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈⟨ ([]-cong₂ +₁∘+₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
[ (i₁ ∘ idC +₁ idC ∘ D₁ i₁ ∘ σ) , (i₂ ∘ idC) ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈⟨ ([]-cong₂ (+₁-cong₂ identityʳ identityˡ) (identityʳ ⟩∘⟨refl)) ⟩∘⟨refl ⟩
[ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈⟨ sym (cancelˡ (_≅_.isoʳ out-≅)) ⟩
out ∘ out⁻¹ ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ∎)
helper₁ : (D₁ distributeʳ⁻¹) ∘ τ ≈ [ D₁ i₁ ∘ τ , D₁ i₂ ∘ τ ] ∘ distributeʳ⁻¹
helper₁ = Iso⇒Epi (IsIso.iso isIsoʳ) ((D₁ distributeʳ⁻¹) ∘ τ) ([ D₁ i₁ ∘ τ , D₁ i₂ ∘ τ ] ∘ distributeʳ⁻¹) (begin
((D₁ distributeʳ⁻¹) ∘ τ) ∘ distributeʳ ≈⟨ ∘[] ⟩
[ ((D₁ distributeʳ⁻¹) ∘ τ) ∘ (i₁ ⁂ idC) , ((D₁ distributeʳ⁻¹) ∘ τ) ∘ (i₂ ⁂ idC) ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⁂-cong₂ refl (sym D-identity))) (refl⟩∘⟨ (⁂-cong₂ refl (sym D-identity))) ⟩
[ ((D₁ distributeʳ⁻¹) ∘ τ) ∘ (i₁ ⁂ D₁ idC) , ((D₁ distributeʳ⁻¹) ∘ τ) ∘ (i₂ ⁂ D₁ idC) ] ≈⟨ []-cong₂ (pullʳ (τ-commute (i₁ , idC))) (pullʳ (τ-commute (i₂ , idC))) ⟩
[ (D₁ distributeʳ⁻¹) ∘ D₁ (i₁ ⁂ idC) ∘ τ , (D₁ distributeʳ⁻¹) ∘ D₁ (i₂ ⁂ idC) ∘ τ ] ≈⟨ []-cong₂ (pullˡ (sym D-homomorphism)) (pullˡ (sym D-homomorphism)) ⟩
[ D₁ (distributeʳ⁻¹ ∘ (i₁ ⁂ idC)) ∘ τ , D₁ (distributeʳ⁻¹ ∘ (i₂ ⁂ idC)) ∘ τ ] ≈⟨ []-cong₂ (D-resp-≈ dstr-law₃ ⟩∘⟨refl) ((D-resp-≈ dstr-law₄) ⟩∘⟨refl) ⟩
[ D₁ i₁ ∘ τ , D₁ i₂ ∘ τ ] ≈˘⟨ cancelʳ (IsIso.isoˡ isIsoʳ) ⟩
([ D₁ i₁ ∘ τ , D₁ i₂ ∘ τ ] ∘ distributeʳ⁻¹) ∘ distributeʳ ∎)
fixpoint₁ = {! !}
-- fixpoint₁ = Iso⇒Mono (_≅_.iso out-≅) (extend σ ∘ τ) (out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ extend σ ∘ τ ] ] ∘ w) (begin
-- out ∘ extend σ ∘ τ ≈⟨ pullˡ (extendlaw σ) ⟩
-- ([ out ∘ σ , i₂ ∘ extend' σ ] ∘ out) ∘ τ ≈⟨ pullʳ (τ-law (D₀ X , Y)) ⟩
-- [ out ∘ σ , i₂ ∘ extend' σ ] ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ pullˡ []∘+₁ ⟩
-- [ (out ∘ σ) ∘ idC , (i₂ ∘ extend' σ) ∘ τ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ ([]-cong₂ (identityʳ ○ u-commutes (σ-coalg X Y)) assoc) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend' σ ∘ τ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ (sym (_≅_.isoˡ out-≅)) refl ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend' σ ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out⁻¹ ∘ out ⁂ out) ≈⟨ sym (refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl (elimˡ ([]-unique id-comm-sym id-comm-sym)))) ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend' σ ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out⁻¹ ⁂ (idC +₁ idC)) ∘ (out ⁂ out) ≈⟨ refl⟩∘⟨ pullˡ (sym (distribute₁ out⁻¹ idC idC)) ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC) , i₂ ∘ extend' σ ∘ τ ] ∘ (((out⁻¹ ⁂ idC) +₁ (out⁻¹ ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (out ⁂ out) ≈⟨ pullˡ (pullˡ []∘+₁) ⟩
-- ([ ((idC +₁ σ) ∘ distributeʳ⁻¹ ∘ (out ⁂ idC)) ∘ (out⁻¹ ⁂ idC) , (i₂ ∘ extend' σ ∘ τ) ∘ (out⁻¹ ⁂ idC) ] ∘ distributeˡ⁻¹) ∘ (out ⁂ out) ≈⟨ assoc ○ ([]-cong₂ (pullʳ (cancelʳ (⁂∘⁂ ○ ⁂-cong₂ (_≅_.isoʳ out-≅) identity² ○ ⟨⟩-unique id-comm id-comm))) (refl⟩∘⟨ (⁂-cong₂ refl (sym D-identity)) ○ (pullʳ (pullʳ (τ-commute (out⁻¹ , idC)))))) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ , i₂ ∘ extend' σ ∘ D₁ (out⁻¹ ⁂ idC) ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ (pullˡ (sym k-assoc)) ○ refl⟩∘⟨ ((extend-≈ (pullˡ k-identityʳ)) ⟩∘⟨refl))) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ , i₂ ∘ extend' (σ ∘ (out⁻¹ ⁂ idC)) ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ ((extend-≈ σ-helper) ⟩∘⟨refl))) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ , i₂ ∘ extend' (out⁻¹ ∘ (idC +₁ σ) ∘ distributeʳ⁻¹) ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈˘⟨ ([]-cong₂ refl (refl⟩∘⟨ ((sym k-assoc ○ extend-≈ (pullˡ k-identityʳ) ○ extend-≈ assoc) ⟩∘⟨refl))) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ , i₂ ∘ (extend' (out⁻¹ ∘ (idC +₁ σ)) ∘ D₁ distributeʳ⁻¹) ∘ τ ] ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ pullʳ helper₁)) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) ∘ distributeʳ⁻¹ , i₂ ∘ extend' (out⁻¹ ∘ (idC +₁ σ)) ∘ [ D₁ i₁ ∘ τ , D₁ i₂ ∘ τ ] ∘ distributeʳ⁻¹ ] ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈˘⟨ pullˡ ([]∘+₁ ○ []-cong₂ refl assoc²') ⟩
-- [ (idC +₁ σ) , i₂ ∘ extend' (out⁻¹ ∘ (idC +₁ σ)) ∘ [ D₁ i₁ ∘ τ , D₁ i₂ ∘ τ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ ∘[])) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) , i₂ ∘ [ extend' (out⁻¹ ∘ (idC +₁ σ)) ∘ D₁ i₁ ∘ τ , extend' (out⁻¹ ∘ (idC +₁ σ)) ∘ D₁ i₂ ∘ τ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ ([]-cong₂ (pullˡ ((sym k-assoc) ○ extend-≈ (pullˡ k-identityʳ))) (pullˡ ((sym k-assoc) ○ extend-≈ (pullˡ k-identityʳ)))))) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) , i₂ ∘ [ extend' ((out⁻¹ ∘ (idC +₁ σ)) ∘ i₁) ∘ τ , extend' ((out⁻¹ ∘ (idC +₁ σ)) ∘ i₂) ∘ τ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ ([]-cong₂ ((extend-≈ (pullʳ +₁∘i₁)) ⟩∘⟨refl) ((extend-≈ (pullʳ +₁∘i₂)) ⟩∘⟨refl)))) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) , i₂ ∘ [ extend' (out⁻¹ ∘ i₁ ∘ idC) ∘ τ , extend' (out⁻¹ ∘ i₂ ∘ σ) ∘ τ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ ([]-cong₂ (elimˡ ((extend-≈ (refl⟩∘⟨ identityʳ)) ○ k-identityˡ)) ((extend-≈ sym-assoc) ⟩∘⟨refl)))) ⟩∘⟨refl ⟩
-- [ (idC +₁ σ) , i₂ ∘ [ τ , extend' (▷ ∘ σ) ∘ τ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out) ≈⟨ ([]-cong₂ refl (refl⟩∘⟨ ([]-cong₂ refl ((sym (▷∘extendˡ σ)) ⟩∘⟨refl ○ assoc)))) ⟩∘⟨refl ⟩
-- [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ extend σ ∘ τ ] ] ∘ w ≈˘⟨ cancelˡ (_≅_.isoʳ out-≅) ⟩
-- out ∘ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ extend σ ∘ τ ] ] ∘ w ∎)
fixpoint₂ = {! !}
fixpoint-eq : ∀ {f : D₀ X × D₀ Y ⇒ D₀ (X × Y)} → f ≈ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ f ] ] ∘ w → f ≈ extend [ now , f ] ∘ g
fixpoint-eq {f} fix = begin
f ≈⟨ fix ⟩
out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ f ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ refl (refl⟩∘⟨ ([]-cong₂ refl (pullʳ inject₂))) ⟩∘⟨refl ⟩
out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , (▷ ∘ [ now , f ]) ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ refl (sym ∘[] ○ refl⟩∘⟨ []-cong₂ (elimˡ (extend-≈ inject₁ ○ k-identityˡ)) (pullˡ k-identityʳ)) ⟩∘⟨refl ⟩
out⁻¹ ∘ [ idC +₁ σ , [ i₂ ∘ extend ([ now , f ] ∘ i₁) ∘ τ , i₂ ∘ extend (▷ ∘ [ now , f ]) ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ ([]-cong₂ (sym identityʳ) (refl⟩∘⟨ (elimˡ ((extend-≈ inject₁) ○ k-identityˡ)))) ([]-cong₂ (pullʳ (pullˡ ((sym k-assoc) ○ extend-≈ (pullˡ k-identityʳ)))) (pullʳ (pullˡ (▷∘extendʳ [ now , f ])))) ⟩∘⟨refl ⟩
out⁻¹ ∘ [ [ i₁ , i₂ ∘ extend ([ now , f ] ∘ i₁) ∘ σ ] , [ (i₂ ∘ extend [ now , f ]) ∘ D₁ i₁ ∘ τ , (i₂ ∘ extend [ now , f ]) ∘ ▷ ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ ([]-cong₂ inject₁ (pullʳ (pullˡ ((sym k-assoc) ○ extend-≈ (pullˡ k-identityʳ))))) ∘[] ⟩∘⟨refl ⟩
out⁻¹ ∘ [ [ [ i₁ , out ∘ f ] ∘ i₁ , (i₂ ∘ extend [ now , f ]) ∘ D₁ i₁ ∘ σ ] , (i₂ ∘ extend [ now , f ]) ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ (([]-cong₂ []∘+₁ (pullˡ inject₂)) ⟩∘⟨refl) ⟩
out⁻¹ ∘ [ [ [ i₁ , out ∘ f ] , i₂ ∘ extend [ now , f ] ] ∘ (i₁ +₁ D₁ i₁ ∘ σ) , [ [ i₁ , out ∘ f ] , i₂ ∘ extend [ now , f ] ] ∘ i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ (pullˡ ∘[]) ⟩
out⁻¹ ∘ [ [ i₁ , out ∘ f ] , i₂ ∘ extend [ now , f ] ] ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈⟨ Iso⇒Mono (_≅_.iso out-≅) (out⁻¹ ∘ [ [ i₁ , out ∘ f ] , i₂ ∘ extend [ now , f ] ] ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w) (extend [ now , f ] ∘ out⁻¹ ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w) helper ⟩
extend [ now , f ] ∘ out⁻¹ ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ∎
where
helper = begin
out ∘ out⁻¹ ∘ [ [ i₁ , out ∘ f ] , i₂ ∘ extend [ now , f ] ] ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈⟨ cancelˡ (_≅_.isoʳ out-≅) ⟩
[ [ i₁ , out ∘ f ] , i₂ ∘ extend [ now , f ] ] ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ ([]-cong₂ (∘[] ○ []-cong₂ unitlaw refl) refl) ⟩∘⟨refl ⟩
[ out ∘ [ now , f ] , i₂ ∘ extend [ now , f ] ] ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ pullʳ (cancelˡ (_≅_.isoʳ out-≅)) ⟩
([ out ∘ [ now , f ] , i₂ ∘ extend [ now , f ] ] ∘ out) ∘ out⁻¹ ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ pullˡ (extendlaw [ now , f ]) ⟩
out ∘ extend [ now , f ] ∘ out⁻¹ ∘ [ i₁ +₁ D₁ i₁ ∘ σ , i₂ ∘ [ D₁ i₁ ∘ τ , ▷ ∘ now ∘ i₂ ] ] ∘ w ∎
{-
out⁻¹ ∘ out ∘ extend σ ∘ τ
≈ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , later ∘ extend σ ∘ τ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out)
≈ extend [ now , extend σ ∘ τ ] ∘ out⁻¹ ∘ [ i₁ +₁ (D₁ i₁) ∘ σ , i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out)
≈ extend [ now , extend σ ∘ τ ] ∘ out⁻¹ ∘ [ i₁ +₁ (D₁ i₁) ∘ σ , i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
out⁻¹ ∘ out ∘ extend τ ∘ σ
≈ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , later ∘ extend τ ∘ σ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out)
≈ extend [ now , extend τ ∘ σ ] ∘ out⁻¹ ∘ [ i₁ +₁ (D₁ i₁) ∘ σ , i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹ ∘ (out ⁂ out)
≈ extend [ now , extend τ ∘ σ ] ∘ out⁻¹ ∘ [ i₁ +₁ (D₁ i₁) ∘ σ , i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
out ∘ extend [ now , extend σ ∘ τ ] ∘ out⁻¹ ∘ [ i₁ +₁ (D₁ i₁) ∘ σ , i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
[ out ∘ [ now , extend σ ∘ τ ] , i₂ ∘ extend [ now , extend σ ∘ τ ] ] ∘ out ∘ out⁻¹ ∘ [ i₁ +₁ (D₁ i₁) ∘ σ , i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
[ [ i₁ , out ∘ extend σ ∘ τ ] , i₂ ∘ extend [ now , extend σ ∘ τ ] ] ∘ [ i₁ +₁ (D₁ i₁) ∘ σ , i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
[ [ [ i₁ , out ∘ extend σ ∘ τ ] , i₂ ∘ extend [ now , extend σ ∘ τ ] ] ∘ (i₁ +₁ (D₁ i₁) ∘ σ) , [ [ i₁ , out ∘ extend σ ∘ τ ] , i₂ ∘ extend [ now , extend σ ∘ τ ] ] ∘ i₂ ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
[ [ [ i₁ , out ∘ extend σ ∘ τ ] ∘ i₁ , i₂ ∘ extend [ now , extend σ ∘ τ ] ∘ (D₁ i₁) ∘ σ ] , i₂ ∘ extend [ now , extend σ ∘ τ ] ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
[ [ i₁ , i₂ ∘ σ ] , i₂ ∘ extend [ now , extend σ ∘ τ ] ∘ [D₁ i₁ ∘ τ , now ∘ i₂ ] ] ∘ w
[ [ i₁ , i₂ ∘ σ ] , i₂ ∘ [extend [ now , extend σ ∘ τ ] ∘ D₁ i₁ ∘ τ , extend [ now , extend σ ∘ τ ] ∘ now ∘ i₂ ] ] ∘ w
[ [ i₁ , i₂ ∘ σ ] , i₂ ∘ [ τ , extend σ ∘ τ ] ] ∘ w
TODO there's an error in the paper, at the end of the proof of proposition two:
the last line of the 3 line calulation 'f = ....'
should be ▷ ∘ η ∘ inr, but is η ∘ inr!!
-}
```

View file

@ -38,17 +38,6 @@ module Monad.Instance.Delay.Strong {o e} (ambient : Ambient o e) (D : De
open Monad monad using (η; μ)
-- TODO change 'coinduction' proofs, move the two proofs i.e. f ≈ ! and ! ≈ g to the where clause
dstr-law₁ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₁) ≈ i₁
dstr-law₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ))
dstr-law₂ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₂) ≈ i₂
dstr-law₂ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ))
distribute₂ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂
distribute₂ = sym (begin
π₂ ≈⟨ introʳ (IsIso.isoʳ isIsoˡ) ⟩
π₂ ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ pullˡ ∘[] ⟩
[ π₂ ∘ ((idC ⁂ i₁)) , π₂ ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎)
module τ-mod (P : Category.Obj (CProduct C C)) where
private
X = proj₁ P