slides are in a somewhat final state

This commit is contained in:
Leon Vatthauer 2024-01-20 17:57:43 +01:00
parent 40c488ab2a
commit d351a89e35
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
4 changed files with 92 additions and 45 deletions

View file

@ -35,7 +35,9 @@
number = {2}, number = {2},
journal = {Mathematical Structures in Computer Science}, journal = {Mathematical Structures in Computer Science},
publisher = {Cambridge University Press}, publisher = {Cambridge University Press},
author = {ADÁMEK, JIŘÍ and MILIUS, STEFAN and VELEBIL, JIŘÍ}, author = {Jir{\'{\i}} Ad{\'{a}}mek and
Stefan Milius and
Jir{\'{\i}} Velebil},
year = {2011}, year = {2011},
pages = {417480} pages = {417480}
} }

View file

@ -7,7 +7,7 @@
% of the GNU Public License, version 2. % of the GNU Public License, version 2.
% %
% ------------------------------------------------------------------------------ % ------------------------------------------------------------------------------
\documentclass[final, handout]{beamer} \documentclass[final]{beamer}
% ======================================================================================== % ========================================================================================
% Theme: inner, outer, font and colors % Theme: inner, outer, font and colors
@ -46,7 +46,7 @@
% custom commands for symbols % custom commands for symbols
\usepackage{styles/symbols} \usepackage{styles/symbols}
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
% ======================================================================================== % ========================================================================================
% Setup for Titlepage % Setup for Titlepage
% ---------------------------------------------------------------------------------------- % ----------------------------------------------------------------------------------------
@ -87,7 +87,7 @@ Leon Vatthauer%\inst{1}
sortcites=true,% sort citations when multiple entries are passed to one cite command sortcites=true,% sort citations when multiple entries are passed to one cite command
doi=true,% doi=true,%
isbn=false,% isbn=false,%
url=false,% % url=false,%
eprint=false,% eprint=false,%
backend=biber% backend=biber%
]{biblatex} ]{biblatex}
@ -195,7 +195,7 @@ at (#3) {#4};
\input{sections/02_goals.tex} \input{sections/02_goals.tex}
% bibliography % bibliography
\begin{frame}[t]{Bibliography} \begin{frame}[allowframebreaks]{Bibliography}
\printbibliography[heading=none] \printbibliography[heading=none]
\end{frame} \end{frame}

View file

@ -36,7 +36,7 @@ What properties should a monad $T$ for modelling partiality have?
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Preliminaries} \begin{frame}[t, fragile]{Capturing Partiality Categorically}{Preliminaries}
We work in category $\mathcal{C}$ that We work in category $\mathcal{C}$ that
\begin{itemize} \begin{itemize}[<+->]
\item has finite products \item has finite products
\item has finite coproducts \item has finite coproducts
\item is distributive, i.e. the following is an iso: \item is distributive, i.e. the following is an iso:
@ -50,6 +50,7 @@ What properties should a monad $T$ for modelling partiality have?
{X \times (Y + Z)} &&&& {(X \times Y) + (X \times Z)} {X \times (Y + Z)} &&&& {(X \times Y) + (X \times Z)}
\arrow["dstl", from=1-1, to=1-5] \arrow["dstl", from=1-1, to=1-5]
\end{tikzcd}\] \end{tikzcd}\]
\item has a natural numbers object $\mathbb{N}$ (which is stable)
\end{itemize} \end{itemize}
\end{frame} \end{frame}
@ -65,7 +66,7 @@ What properties should a monad $T$ for modelling partiality have?
\tdom(g \circ (\tdom f)) &= (\tdom g) \circ (\tdom f)\\ \tdom(g \circ (\tdom f)) &= (\tdom g) \circ (\tdom f)\\
(\tdom h) \circ f &= f \circ \tdom (h \circ f) (\tdom h) \circ f &= f \circ \tdom (h \circ f)
\end{alignat} \end{alignat}
for any $X, Y, Z \in \vert\mathcal{C}\vert, f : X \rightarrow KY, g : X \rightarrow KZ, h: Y \rightarrow KZ$. for any $X, Y, Z \in \vert\mathcal{C}\vert, f : X \rightarrow Y, g : X \rightarrow Z, h: Y \rightarrow Z$.
\end{definition} \end{definition}
\onslide<2-> \onslide<2->
@ -104,8 +105,8 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{The Maybe Monad} \begin{frame}[t, fragile]{Capturing Partiality Categorically}{The Maybe Monad}
\begin{itemize}[<+->] \begin{itemize}[<+->]
\item $MX = X + 1$ \item $MX = X + 1$
\item on a distributive category the maybe monad is strong and commutative: \item The maybe monad is strong and commutative:
\[ \tau_{X,Y} := X \times (Y + 1) \overset{dstr}{\longrightarrow} (X \times Y) + (X \times 1) \overset{id+1}{\longrightarrow} (X \times Y) + 1 \] \[ \tau_{X,Y} := X \times (Y + 1) \overset{dstl}{\longrightarrow} (X \times Y) + (X \times 1) \overset{id+!}{\longrightarrow} (X \times Y) + 1 \]
\item and the following diagram commutes (i.e. it is an equational lifting monad): \item and the following diagram commutes (i.e. it is an equational lifting monad):
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJYKzEiXSxbMywwLCIoWCsxKVxcdGltZXMoWCsxKSJdLFszLDIsIigoWCsxKVxcdGltZXMgWCkgKygoWCsxKVxcdGltZXMgMSkiXSxbMyw0LCIoKFgrMSlcXHRpbWVzIFgpKzEiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiZHN0ciJdLFsyLDMsImlkKyEiXSxbMCwzLCJcXGxhbmdsZSBpbmwsaWRcXHJhbmdsZSArICEiLDJdXQ== % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYKzEiXSxbMywwLCIoWCsxKVxcdGltZXMoWCsxKSJdLFszLDIsIigoWCsxKVxcdGltZXMgWCkgKygoWCsxKVxcdGltZXMgMSkiXSxbMyw0LCIoKFgrMSlcXHRpbWVzIFgpKzEiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiZHN0ciJdLFsyLDMsImlkKyEiXSxbMCwzLCJcXGxhbmdsZSBpbmwsaWRcXHJhbmdsZSArICEiLDJdXQ==
\[\begin{tikzcd} \[\begin{tikzcd}
@ -115,7 +116,7 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
\\ \\
&&& {((X+1)\times X)+1} &&& {((X+1)\times X)+1}
\arrow["\Delta", from=1-1, to=1-4] \arrow["\Delta", from=1-1, to=1-4]
\arrow["dstr", from=1-4, to=3-4] \arrow["dstl", from=1-4, to=3-4]
\arrow["{id+!}", from=3-4, to=5-4] \arrow["{id+!}", from=3-4, to=5-4]
\arrow["{\langle inl,id\rangle + !}"', from=1-1, to=5-4] \arrow["{\langle inl,id\rangle + !}"', from=1-1, to=5-4]
\end{tikzcd}\] \end{tikzcd}\]
@ -131,13 +132,13 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
\inferrule {x : X} {now\; x : DX}\hskip 2cm \inferrule {x : X} {now\; x : DX}\hskip 2cm
\inferrule {c : DX} {later\; c : DX}\] \inferrule {c : DX} {later\; c : DX}\]
\item Categorically: $DX = \nu A. X + A$ \item $DX = \nu A. X + A$
\item By Lambek we get $DX \cong X + DX$ which yields: \item By Lambek we get $DX \cong X + DX$ which yields:
\begin{alignat*}{2} \begin{alignat*}{2}
&out &&: DX \rightarrow X + DX\\ &out &&: DX \rightarrow X + DX\\
&out^{-1} &&: X + DX \rightarrow DX = [ now , later ] &out^{-1} &&: X + DX \rightarrow DX = [ now , later ]
\end{alignat*} \end{alignat*}
\item $D$ (if it exists) is a strong and commutative monad (on a cartesian, cocartesian, distributive category) \item $D$ (if it exists) is a strong and commutative monad
\item $D$ is not an equational lifting monad, because besides modelling partiality, it also counts steps \\(e.g. $now\; c \not= later\; (now\; c)$) \item $D$ is not an equational lifting monad, because besides modelling partiality, it also counts steps \\(e.g. $now\; c \not= later\; (now\; c)$)
\end{itemize} \end{itemize}
\end{frame} \end{frame}
@ -146,25 +147,34 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
% \eta = now % \eta = now
% given f : X \rightarrow TY, f* is defined by corecursion. % given f : X \rightarrow TY, f* is defined by corecursion.
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Quotienting the Delay Monad~\cite{quotienting}}
Following the work by Chapman, Uustalu and Veltri we can quotient $D$ by the 'correct' kind of equality:
\[\mprset{fraction={===}}
\inferrule {p \downarrow c \\ q \downarrow c} {p \approx q}\hskip 2cm
\inferrule {p \approx q} {later\; p \approx later\; q}\]
\pause
where
\[
\inferrule {\;} {now\;c \downarrow c}\hskip 2cm
\inferrule {x \downarrow c} {later\; x \downarrow c}\]
\pause
we can model this as the coequalizer:
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJEKFhcXHRpbWVzIFxcbWF0aGJie059KSJdLFsyLDAsIkRYIl0sWzQsMCwiRF9cXGFwcHJveCJdLFswLDEsIlxcaW90YV4qIiwwLHsib2Zmc2V0IjotMn1dLFswLDEsIkQgZnN0IiwyLHsib2Zmc2V0IjoyfV0sWzEsMiwiXFxyaG9fWCJdXQ==
\[\begin{tikzcd}
{D(X\times \mathbb{N})} && DX && {D_\approx X}
\arrow["{\iota^*}", shift left=2, from=1-1, to=1-3]
\arrow["{D fst}"', shift right=2, from=1-1, to=1-3]
\arrow["{\rho_X}", from=1-3, to=1-5]
\end{tikzcd}\]
\pause
\textbf{Problem}: Defining $\mu_X : D_\approx^2 X \rightarrow D_\approx X$ requires countable choice.
\end{frame}
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Algebras}
%%%%%%%% \pause
% NOTE: The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complete Elgot Algebras}~\cite{elgotalgebras}:
% quotienting D should be covered later in the agda chapter, not here!
% \begin{frame}[t, fragile]{The quotiented Delay Monad}
% Following the work in~\cite{quotienting} we quotient $D$ by weak bisimilarity:
% \[\mprset{fraction={===}}
% \inferrule {p \downarrow c \\ q \downarrow c} {p \approx q}\hskip 2cm
% \inferrule {p \approx q} {later\; p \approx later\; q}\]
% \end{frame}
%%%%%%%
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Algebras~\cite{elgotalgebras}}
The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complete Elgot Algebras}:
\begin{definition} \begin{definition}
A (unguarded) Elgot Algebra consists of: A (unguarded) Elgot Algebra~\cite{uniformelgot} consists of:
\begin{itemize} \begin{itemize}
\item An object X \item An object X
\item for every $f : S \rightarrow X + S$ the iteration $f^\# : S \rightarrow X$, satisfying: \item for every $f : S \rightarrow X + S$ the iteration $f^\# : S \rightarrow X$, satisfying:
@ -184,16 +194,20 @@ The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complet
\end{frame} \end{frame}
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Monads~\cite{elgotmonad}} \begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Monads~\cite{elgotmonad}}
Recall the following notion:
\begin{definition} \begin{definition}
A monad $\mathbf{T}$ is an Elgot monad if it has an iteration operator $(f : X \rightarrow T(Y + X))^\dagger : X \rightarrow TY$ satisfying: A monad $\mathbf{T}$ is an Elgot monad if it has an iteration operator $(f : X \rightarrow T(Y + X))^\dagger : X \rightarrow TY$ satisfying:
\begin{itemize} \begin{itemize}
\item \textbf{Fixpoint}: \item \textbf{Fixpoint}: $f^\dagger = [ \eta , f^\dagger ]^* \circ f$
\item \textbf{Naturality}: \\for $f : X \rightarrow T(Y + X)$
\item \textbf{Codiagonal}: \item \textbf{Uniformity}: $f \circ h = T(id + h) \circ g \Rightarrow f^\dagger \circ h = g^\dagger$
\item \textbf{Uniformity}: \\for $f : X \rightarrow T(Y + X) , g : Z \rightarrow T(Y + Z)$
\item \textbf{Naturality}: $g^* \circ f^\dagger = ([ (T inl) \circ g , \eta \circ inr ]^* \circ f )^\dagger$
\\for $f : X \rightarrow T(Y + X), g : Y \rightarrow TZ$
\item \textbf{Codiagonal}: $f^{\dagger\dagger} = (T[id , inr ] \circ f)^\dagger$
\\for $f : X \rightarrow T((Y + X) + X)$
\end{itemize} \end{itemize}
\end{definition} \end{definition}
\pause
\begin{block}{Remark} \begin{block}{Remark}
Strong Elgot Monads are regarded as minimal semantic structures for interpreting effectful while-languages. Strong Elgot Monads are regarded as minimal semantic structures for interpreting effectful while-languages.
\end{block} \end{block}
@ -209,6 +223,7 @@ Strong Elgot Monads are regarded as minimal semantic structures for interpreting
A monad $\mathbf{T}$ is called pre-Elgot if every $TX$ extends to an Elgot algebra such that Kleisli lifting is iteration preversing, i.e. A monad $\mathbf{T}$ is called pre-Elgot if every $TX$ extends to an Elgot algebra such that Kleisli lifting is iteration preversing, i.e.
\[h^* \circ f^\# = ((h^* + id) \circ f)^\#\qquad \text{for}\; f : Z \rightarrow TX + Z, h : X \rightarrow TY\] \[h^* \circ f^\# = ((h^* + id) \circ f)^\#\qquad \text{for}\; f : Z \rightarrow TX + Z, h : X \rightarrow TY\]
\end{definition} \end{definition}
\pause
\begin{theorem} \begin{theorem}
Every Elgot monad is pre-Elgot Every Elgot monad is pre-Elgot
\end{theorem} \end{theorem}
@ -216,15 +231,33 @@ Strong Elgot Monads are regarded as minimal semantic structures for interpreting
\begin{frame}[t, fragile]{Partiality from iteration}{The initial pre-Elgot Monad~\cite{uniformelgot}} \begin{frame}[t, fragile]{Partiality from iteration}{The initial pre-Elgot Monad~\cite{uniformelgot}}
\begin{itemize}[<+->] \begin{itemize}[<+->]
\item By defining $KX$ as the free Elgot algebra over $X$ we get a monad $K$ \item By defining $KX$ as the free Elgot algebra over $X$ we get a monad $K$ (that we assume is stable)
\item $K$ is strong and commutative \item $K$ is strong and commutative
\item $K$ is an equational lifting monad \item $K$ is an equational lifting monad
\item $K$ is the initial pre-Elgot monad \item $K$ is the initial pre-Elgot monad
\end{itemize} \end{itemize}
\end{frame} \end{frame}
\begin{frame}[t, fragile]{Partiality from iteration}{Closing the gap} \begin{frame}[t, fragile]{Partiality from iteration}{Closing the gap~\cite{uniformelgot}}
... Let's look at $\mathbf{K}$ under various assumptions:
\begin{itemize}[<+->]
\item \textbf{Assuming excluded middle:}
\begin{itemize}[<+->]
\item The initial pre-Elgot monad and the initial Elgot monad coincide
\item $DX \cong X \times \mathbb{N} + 1$
\item $D_\approx X \cong X + 1$
\item $X + 1$ is the initial (pre-)Elgot monad ($\Rightarrow K \cong (-)+1 \cong D_\approx$)
\end{itemize}
% \\$\Rightarrow$ $X+1$ is the initial pre-Elgot Monad and also the initial Elgot Monad.
\item \textbf{Assuming countable choice:}
\begin{itemize}[<+->]
\item The initial pre-Elgot monad and the initial Elgot monad coincide
\item $D_\approx$ is the initial (pre-)Elgot Monad ($\Rightarrow K \cong D_\approx$).
\end{itemize}
\end{itemize}
\end{frame} \end{frame}

View file

@ -1,7 +1,7 @@
\section{Implementation in Agda} \section{Implementation in Agda}
\begin{frame}[t, fragile]{Goals} \begin{frame}[t, fragile]{Goals}
\begin{itemize} \begin{itemize}[<+->]
\item Formalize the delay monad categorically and show that it is.. \item Formalize the delay monad categorically and show that it is..
\begin{itemize} \begin{itemize}
\item strong \item strong
@ -13,15 +13,27 @@
\item commutative \item commutative
\item an equational lifting monad \item an equational lifting monad
\end{itemize} \end{itemize}
\item Take the category of setoids and show that $K$ instantiates to $D$ quotiented by weak-bisimilarity \item Take the category of setoids and show that $K$ instantiates to $D_\approx$
\end{itemize} \end{itemize}
\end{frame} \end{frame}
\begin{frame}[t, fragile]{Category theory in Agda} \begin{frame}[t, fragile, blank]{Category Theory in Agda}{Setoid-enriched Categories}
agda-categories \begin{minted}{agda}
\end{frame} record Category (o e : Level) : Set (suc (o ⊔ ⊔ e)) where
field
Obj : Set o
__ : Obj → Obj → Set
__ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e
\begin{frame}[t, fragile]{Resumee} id : ∀ {A} → (A ⇒ A)
On doing category theory in agda __ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
(pro/con)
field
assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
→ (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
equiv : ∀ {A B} → IsEquivalence (__ {A} {B})
∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i
\end{minted}
\end{frame} \end{frame}