mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
slides are in a somewhat final state
This commit is contained in:
parent
40c488ab2a
commit
d351a89e35
4 changed files with 92 additions and 45 deletions
|
@ -35,7 +35,9 @@
|
|||
number = {2},
|
||||
journal = {Mathematical Structures in Computer Science},
|
||||
publisher = {Cambridge University Press},
|
||||
author = {ADÁMEK, JIŘÍ and MILIUS, STEFAN and VELEBIL, JIŘÍ},
|
||||
author = {Jir{\'{\i}} Ad{\'{a}}mek and
|
||||
Stefan Milius and
|
||||
Jir{\'{\i}} Velebil},
|
||||
year = {2011},
|
||||
pages = {417–480}
|
||||
}
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
% of the GNU Public License, version 2.
|
||||
%
|
||||
% ------------------------------------------------------------------------------
|
||||
\documentclass[final, handout]{beamer}
|
||||
\documentclass[final]{beamer}
|
||||
|
||||
% ========================================================================================
|
||||
% Theme: inner, outer, font and colors
|
||||
|
@ -46,7 +46,7 @@
|
|||
% custom commands for symbols
|
||||
\usepackage{styles/symbols}
|
||||
|
||||
|
||||
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
|
||||
% ========================================================================================
|
||||
% Setup for Titlepage
|
||||
% ----------------------------------------------------------------------------------------
|
||||
|
@ -87,7 +87,7 @@ Leon Vatthauer%\inst{1}
|
|||
sortcites=true,% sort citations when multiple entries are passed to one cite command
|
||||
doi=true,%
|
||||
isbn=false,%
|
||||
url=false,%
|
||||
% url=false,%
|
||||
eprint=false,%
|
||||
backend=biber%
|
||||
]{biblatex}
|
||||
|
@ -195,7 +195,7 @@ at (#3) {#4};
|
|||
\input{sections/02_goals.tex}
|
||||
|
||||
% bibliography
|
||||
\begin{frame}[t]{Bibliography}
|
||||
\begin{frame}[allowframebreaks]{Bibliography}
|
||||
\printbibliography[heading=none]
|
||||
\end{frame}
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ What properties should a monad $T$ for modelling partiality have?
|
|||
|
||||
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Preliminaries}
|
||||
We work in category $\mathcal{C}$ that
|
||||
\begin{itemize}
|
||||
\begin{itemize}[<+->]
|
||||
\item has finite products
|
||||
\item has finite coproducts
|
||||
\item is distributive, i.e. the following is an iso:
|
||||
|
@ -50,6 +50,7 @@ What properties should a monad $T$ for modelling partiality have?
|
|||
{X \times (Y + Z)} &&&& {(X \times Y) + (X \times Z)}
|
||||
\arrow["dstl", from=1-1, to=1-5]
|
||||
\end{tikzcd}\]
|
||||
\item has a natural numbers object $\mathbb{N}$ (which is stable)
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
@ -65,7 +66,7 @@ What properties should a monad $T$ for modelling partiality have?
|
|||
\tdom(g \circ (\tdom f)) &= (\tdom g) \circ (\tdom f)\\
|
||||
(\tdom h) \circ f &= f \circ \tdom (h \circ f)
|
||||
\end{alignat}
|
||||
for any $X, Y, Z \in \vert\mathcal{C}\vert, f : X \rightarrow KY, g : X \rightarrow KZ, h: Y \rightarrow KZ$.
|
||||
for any $X, Y, Z \in \vert\mathcal{C}\vert, f : X \rightarrow Y, g : X \rightarrow Z, h: Y \rightarrow Z$.
|
||||
\end{definition}
|
||||
|
||||
\onslide<2->
|
||||
|
@ -104,8 +105,8 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
|
|||
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{The Maybe Monad}
|
||||
\begin{itemize}[<+->]
|
||||
\item $MX = X + 1$
|
||||
\item on a distributive category the maybe monad is strong and commutative:
|
||||
\[ \tau_{X,Y} := X \times (Y + 1) \overset{dstr}{\longrightarrow} (X \times Y) + (X \times 1) \overset{id+1}{\longrightarrow} (X \times Y) + 1 \]
|
||||
\item The maybe monad is strong and commutative:
|
||||
\[ \tau_{X,Y} := X \times (Y + 1) \overset{dstl}{\longrightarrow} (X \times Y) + (X \times 1) \overset{id+!}{\longrightarrow} (X \times Y) + 1 \]
|
||||
\item and the following diagram commutes (i.e. it is an equational lifting monad):
|
||||
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJYKzEiXSxbMywwLCIoWCsxKVxcdGltZXMoWCsxKSJdLFszLDIsIigoWCsxKVxcdGltZXMgWCkgKygoWCsxKVxcdGltZXMgMSkiXSxbMyw0LCIoKFgrMSlcXHRpbWVzIFgpKzEiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiZHN0ciJdLFsyLDMsImlkKyEiXSxbMCwzLCJcXGxhbmdsZSBpbmwsaWRcXHJhbmdsZSArICEiLDJdXQ==
|
||||
\[\begin{tikzcd}
|
||||
|
@ -115,7 +116,7 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
|
|||
\\
|
||||
&&& {((X+1)\times X)+1}
|
||||
\arrow["\Delta", from=1-1, to=1-4]
|
||||
\arrow["dstr", from=1-4, to=3-4]
|
||||
\arrow["dstl", from=1-4, to=3-4]
|
||||
\arrow["{id+!}", from=3-4, to=5-4]
|
||||
\arrow["{\langle inl,id\rangle + !}"', from=1-1, to=5-4]
|
||||
\end{tikzcd}\]
|
||||
|
@ -131,13 +132,13 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
|
|||
\inferrule {x : X} {now\; x : DX}\hskip 2cm
|
||||
\inferrule {c : DX} {later\; c : DX}\]
|
||||
|
||||
\item Categorically: $DX = \nu A. X + A$
|
||||
\item $DX = \nu A. X + A$
|
||||
\item By Lambek we get $DX \cong X + DX$ which yields:
|
||||
\begin{alignat*}{2}
|
||||
&out &&: DX \rightarrow X + DX\\
|
||||
&out^{-1} &&: X + DX \rightarrow DX = [ now , later ]
|
||||
\end{alignat*}
|
||||
\item $D$ (if it exists) is a strong and commutative monad (on a cartesian, cocartesian, distributive category)
|
||||
\item $D$ (if it exists) is a strong and commutative monad
|
||||
\item $D$ is not an equational lifting monad, because besides modelling partiality, it also counts steps \\(e.g. $now\; c \not= later\; (now\; c)$)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
@ -146,25 +147,34 @@ Intuitively $\tdom f$ captures the domain of definedness of $f$.
|
|||
% \eta = now
|
||||
% given f : X \rightarrow TY, f* is defined by corecursion.
|
||||
|
||||
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Quotienting the Delay Monad~\cite{quotienting}}
|
||||
Following the work by Chapman, Uustalu and Veltri we can quotient $D$ by the 'correct' kind of equality:
|
||||
\[\mprset{fraction={===}}
|
||||
\inferrule {p \downarrow c \\ q \downarrow c} {p \approx q}\hskip 2cm
|
||||
\inferrule {p \approx q} {later\; p \approx later\; q}\]
|
||||
\pause
|
||||
where
|
||||
\[
|
||||
\inferrule {\;} {now\;c \downarrow c}\hskip 2cm
|
||||
\inferrule {x \downarrow c} {later\; x \downarrow c}\]
|
||||
\pause
|
||||
we can model this as the coequalizer:
|
||||
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJEKFhcXHRpbWVzIFxcbWF0aGJie059KSJdLFsyLDAsIkRYIl0sWzQsMCwiRF9cXGFwcHJveCJdLFswLDEsIlxcaW90YV4qIiwwLHsib2Zmc2V0IjotMn1dLFswLDEsIkQgZnN0IiwyLHsib2Zmc2V0IjoyfV0sWzEsMiwiXFxyaG9fWCJdXQ==
|
||||
\[\begin{tikzcd}
|
||||
{D(X\times \mathbb{N})} && DX && {D_\approx X}
|
||||
\arrow["{\iota^*}", shift left=2, from=1-1, to=1-3]
|
||||
\arrow["{D fst}"', shift right=2, from=1-1, to=1-3]
|
||||
\arrow["{\rho_X}", from=1-3, to=1-5]
|
||||
\end{tikzcd}\]
|
||||
\pause
|
||||
\textbf{Problem}: Defining $\mu_X : D_\approx^2 X \rightarrow D_\approx X$ requires countable choice.
|
||||
\end{frame}
|
||||
|
||||
|
||||
%%%%%%%%
|
||||
% NOTE:
|
||||
% quotienting D should be covered later in the agda chapter, not here!
|
||||
|
||||
% \begin{frame}[t, fragile]{The quotiented Delay Monad}
|
||||
% Following the work in~\cite{quotienting} we quotient $D$ by weak bisimilarity:
|
||||
% \[\mprset{fraction={===}}
|
||||
% \inferrule {p \downarrow c \\ q \downarrow c} {p \approx q}\hskip 2cm
|
||||
% \inferrule {p \approx q} {later\; p \approx later\; q}\]
|
||||
|
||||
% \end{frame}
|
||||
%%%%%%%
|
||||
|
||||
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Algebras~\cite{elgotalgebras}}
|
||||
The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complete Elgot Algebras}:
|
||||
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Algebras}
|
||||
\pause
|
||||
The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complete Elgot Algebras}~\cite{elgotalgebras}:
|
||||
\begin{definition}
|
||||
A (unguarded) Elgot Algebra consists of:
|
||||
A (unguarded) Elgot Algebra~\cite{uniformelgot} consists of:
|
||||
\begin{itemize}
|
||||
\item An object X
|
||||
\item for every $f : S \rightarrow X + S$ the iteration $f^\# : S \rightarrow X$, satisfying:
|
||||
|
@ -184,16 +194,20 @@ The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complet
|
|||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Monads~\cite{elgotmonad}}
|
||||
Recall the following notion:
|
||||
\begin{definition}
|
||||
A monad $\mathbf{T}$ is an Elgot monad if it has an iteration operator $(f : X \rightarrow T(Y + X))^\dagger : X \rightarrow TY$ satisfying:
|
||||
\begin{itemize}
|
||||
\item \textbf{Fixpoint}:
|
||||
\item \textbf{Naturality}:
|
||||
\item \textbf{Codiagonal}:
|
||||
\item \textbf{Uniformity}:
|
||||
\item \textbf{Fixpoint}: $f^\dagger = [ \eta , f^\dagger ]^* \circ f$
|
||||
\\for $f : X \rightarrow T(Y + X)$
|
||||
\item \textbf{Uniformity}: $f \circ h = T(id + h) \circ g \Rightarrow f^\dagger \circ h = g^\dagger$
|
||||
\\for $f : X \rightarrow T(Y + X) , g : Z \rightarrow T(Y + Z)$
|
||||
\item \textbf{Naturality}: $g^* \circ f^\dagger = ([ (T inl) \circ g , \eta \circ inr ]^* \circ f )^\dagger$
|
||||
\\for $f : X \rightarrow T(Y + X), g : Y \rightarrow TZ$
|
||||
\item \textbf{Codiagonal}: $f^{\dagger\dagger} = (T[id , inr ] \circ f)^\dagger$
|
||||
\\for $f : X \rightarrow T((Y + X) + X)$
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
\pause
|
||||
\begin{block}{Remark}
|
||||
Strong Elgot Monads are regarded as minimal semantic structures for interpreting effectful while-languages.
|
||||
\end{block}
|
||||
|
@ -209,6 +223,7 @@ Strong Elgot Monads are regarded as minimal semantic structures for interpreting
|
|||
A monad $\mathbf{T}$ is called pre-Elgot if every $TX$ extends to an Elgot algebra such that Kleisli lifting is iteration preversing, i.e.
|
||||
\[h^* \circ f^\# = ((h^* + id) \circ f)^\#\qquad \text{for}\; f : Z \rightarrow TX + Z, h : X \rightarrow TY\]
|
||||
\end{definition}
|
||||
\pause
|
||||
\begin{theorem}
|
||||
Every Elgot monad is pre-Elgot
|
||||
\end{theorem}
|
||||
|
@ -216,15 +231,33 @@ Strong Elgot Monads are regarded as minimal semantic structures for interpreting
|
|||
|
||||
\begin{frame}[t, fragile]{Partiality from iteration}{The initial pre-Elgot Monad~\cite{uniformelgot}}
|
||||
\begin{itemize}[<+->]
|
||||
\item By defining $KX$ as the free Elgot algebra over $X$ we get a monad $K$
|
||||
\item By defining $KX$ as the free Elgot algebra over $X$ we get a monad $K$ (that we assume is stable)
|
||||
\item $K$ is strong and commutative
|
||||
\item $K$ is an equational lifting monad
|
||||
\item $K$ is the initial pre-Elgot monad
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Partiality from iteration}{Closing the gap}
|
||||
...
|
||||
\begin{frame}[t, fragile]{Partiality from iteration}{Closing the gap~\cite{uniformelgot}}
|
||||
Let's look at $\mathbf{K}$ under various assumptions:
|
||||
\begin{itemize}[<+->]
|
||||
\item \textbf{Assuming excluded middle:}
|
||||
|
||||
\begin{itemize}[<+->]
|
||||
\item The initial pre-Elgot monad and the initial Elgot monad coincide
|
||||
\item $DX \cong X \times \mathbb{N} + 1$
|
||||
\item $D_\approx X \cong X + 1$
|
||||
\item $X + 1$ is the initial (pre-)Elgot monad ($\Rightarrow K \cong (-)+1 \cong D_\approx$)
|
||||
\end{itemize}
|
||||
|
||||
% \\$\Rightarrow$ $X+1$ is the initial pre-Elgot Monad and also the initial Elgot Monad.
|
||||
\item \textbf{Assuming countable choice:}
|
||||
\begin{itemize}[<+->]
|
||||
\item The initial pre-Elgot monad and the initial Elgot monad coincide
|
||||
\item $D_\approx$ is the initial (pre-)Elgot Monad ($\Rightarrow K \cong D_\approx$).
|
||||
\end{itemize}
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
\section{Implementation in Agda}
|
||||
|
||||
\begin{frame}[t, fragile]{Goals}
|
||||
\begin{itemize}
|
||||
\begin{itemize}[<+->]
|
||||
\item Formalize the delay monad categorically and show that it is..
|
||||
\begin{itemize}
|
||||
\item strong
|
||||
|
@ -13,15 +13,27 @@
|
|||
\item commutative
|
||||
\item an equational lifting monad
|
||||
\end{itemize}
|
||||
\item Take the category of setoids and show that $K$ instantiates to $D$ quotiented by weak-bisimilarity
|
||||
\item Take the category of setoids and show that $K$ instantiates to $D_\approx$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Category theory in Agda}
|
||||
agda-categories
|
||||
\end{frame}
|
||||
\begin{frame}[t, fragile, blank]{Category Theory in Agda}{Setoid-enriched Categories}
|
||||
\begin{minted}{agda}
|
||||
record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
|
||||
field
|
||||
Obj : Set o
|
||||
_⇒_ : Obj → Obj → Set ℓ
|
||||
_≈_ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e
|
||||
|
||||
\begin{frame}[t, fragile]{Resumee}
|
||||
On doing category theory in agda
|
||||
(pro/con)
|
||||
id : ∀ {A} → (A ⇒ A)
|
||||
_∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
|
||||
|
||||
field
|
||||
assoc : ∀ {A B C D} {f : A ⇒ B} {g : B ⇒ C} {h : C ⇒ D}
|
||||
→ (h ∘ g) ∘ f ≈ h ∘ (g ∘ f)
|
||||
identityˡ : ∀ {A B} {f : A ⇒ B} → id ∘ f ≈ f
|
||||
identityʳ : ∀ {A B} {f : A ⇒ B} → f ∘ id ≈ f
|
||||
equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
|
||||
∘-resp-≈ : ∀ {A B C} {f h : B ⇒ C} {g i : A ⇒ B} → f ≈ h → g ≈ i → f ∘ g ≈ h ∘ i
|
||||
\end{minted}
|
||||
\end{frame}
|
Loading…
Reference in a new issue