From d6c13a88e478471ee6e80575ee3f5f254b65f346 Mon Sep 17 00:00:00 2001 From: Leon Vatthauer Date: Tue, 6 Feb 2024 18:23:12 +0100 Subject: [PATCH] minor --- agda/src/Monad/Instance/Delay.lagda.md | 16 +--------------- agda/src/Monad/Instance/Delay/Strong.lagda.md | 8 +------- 2 files changed, 2 insertions(+), 22 deletions(-) diff --git a/agda/src/Monad/Instance/Delay.lagda.md b/agda/src/Monad/Instance/Delay.lagda.md index be02b23..f7f4959 100644 --- a/agda/src/Monad/Instance/Delay.lagda.md +++ b/agda/src/Monad/Instance/Delay.lagda.md @@ -289,7 +289,7 @@ and second that `extend f` is the unique morphism satisfying the commutative dia ; unit = now ; extend = extend' ; identityʳ = identityʳ' - ; identityˡ = identityˡ' + ; identityˡ = extend'-unique now idC (id-comm ○ (sym ([]-unique (identityˡ ○ sym unitlaw) id-comm-sym)) ⟩∘⟨refl) ; assoc = assoc' ; sym-assoc = sym assoc' ; extend-≈ = extend-≈' @@ -328,20 +328,6 @@ and second that `extend f` is the unique morphism satisfying the commutative dia out⁻¹ ∘ out ∘ f ≈⟨ cancelˡ (_≅_.isoˡ out-≅) ⟩ f ∎ - identityˡ' : ∀ {X} → extend' now ≈ idC - identityˡ' {X} = Terminal.⊤-id (coalgebras X) (record { f = extend' now ; commutes = begin - out ∘ extend' now ≈⟨ pullˡ ((commutes (! (coalgebras X) {A = alg now}))) ⟩ - ((idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ α (alg now)) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩ - (idC +₁ (u (! (coalgebras X) {A = alg now}))) - ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out ∘ now) , i₂ ∘ i₁ ] ∘ out ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ unitlaw) ○ inject₁) refl ⟩∘⟨refl ⟩ - (idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out ≈⟨ pullˡ ∘[] ⟩ - [ (idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ i₁ - , (idC +₁ (u (! (coalgebras X) {A = alg now}))) ∘ i₂ ∘ i₁ ] ∘ out ≈⟨ []-cong₂ +₁∘i₁ (pullˡ +₁∘i₂) ⟩∘⟨refl ⟩ - [ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras X) {A = alg now}))) ∘ i₁ ] ∘ out ≈⟨ []-cong₂ refl assoc ⟩∘⟨refl ⟩ - [ i₁ ∘ idC , i₂ ∘ (extend' now) ] ∘ out ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩ - ([ i₁ , i₂ ] ∘ (idC +₁ extend' now)) ∘ out ≈⟨ elimˡ +-η ⟩∘⟨refl ⟩ - (idC +₁ extend' now) ∘ out ∎ }) - assoc' : ∀ {X Y Z : Obj} {g : X ⇒ D₀ Y} {h : Y ⇒ D₀ Z} → extend' (extend' h ∘ g) ≈ extend' h ∘ extend' g assoc' {X} {Y} {Z} {g} {h} = extend'-unique (extend' h ∘ g) (extend' h ∘ extend' g) (begin out ∘ extend' h ∘ extend' g ≈⟨ pullˡ (extendlaw h) ⟩ diff --git a/agda/src/Monad/Instance/Delay/Strong.lagda.md b/agda/src/Monad/Instance/Delay/Strong.lagda.md index 537d234..ad29f67 100644 --- a/agda/src/Monad/Instance/Delay/Strong.lagda.md +++ b/agda/src/Monad/Instance/Delay/Strong.lagda.md @@ -88,13 +88,7 @@ module Monad.Instance.Delay.Strong {o ℓ e} (ambient : Ambient o ℓ e) (D : De { η = τ ; commute = commute' }) ; identityˡ = identityˡ' -- triangle - ; η-comm = begin -- η-τ - τ _ ∘ (idC ⁂ now) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (sym identity²) refl ○ sym ⁂∘⁂) ⟩ - τ _ ∘ (idC ⁂ out⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullˡ (τ-helper _) ⟩ - (out⁻¹ ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullʳ (pullʳ distributeˡ⁻¹-i₁) ⟩ - out⁻¹ ∘ (idC +₁ τ _) ∘ i₁ ≈⟨ refl⟩∘⟨ +₁∘i₁ ⟩ - out⁻¹ ∘ i₁ ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩ - now ∎ + ; η-comm = λ {A} {B} → τ-now (A , B) ; μ-η-comm = μ-η-comm' -- μ-τ ; strength-assoc = strength-assoc' -- square }