mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
fix imports
This commit is contained in:
parent
1f4e5460d7
commit
d762e280ad
4 changed files with 8 additions and 8 deletions
|
@ -22,7 +22,7 @@ open import Category.Construction.UniformIterationAlgebras ambient
|
|||
open import Algebra.UniformIterationAlgebra ambient
|
||||
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
|
||||
open import Algebra.ElgotAlgebra ambient
|
||||
open import Monad.Instance.K.Elgot ambient MK
|
||||
open import Monad.Instance.K.ElgotAlgebra ambient MK
|
||||
|
||||
open Equiv
|
||||
open HomReasoning
|
||||
|
|
|
@ -9,7 +9,7 @@ import Monad.Instance.K as MIK
|
|||
# Every KX is a free Elgot algebra
|
||||
|
||||
```agda
|
||||
module Monad.Instance.K.Elgot {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
|
||||
module Monad.Instance.K.ElgotAlgebra {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
|
||||
open Ambient ambient
|
||||
open MIK ambient
|
||||
open MonadK MK
|
|
@ -22,7 +22,7 @@ open import Algebra.ElgotAlgebra ambient
|
|||
open import Algebra.UniformIterationAlgebra ambient
|
||||
open import Monad.PreElgot ambient
|
||||
open import Monad.Instance.K ambient
|
||||
open import Monad.Instance.K.Elgot ambient MK
|
||||
open import Monad.Instance.K.ElgotAlgebra ambient MK
|
||||
open import Monad.Instance.K.Commutative ambient MK
|
||||
open import Monad.Instance.K.Strong ambient MK
|
||||
open import Category.Construction.PreElgotMonads ambient
|
||||
|
@ -34,7 +34,7 @@ open MR C
|
|||
open M C
|
||||
```
|
||||
|
||||
# K is a pre-Elgot monad
|
||||
# K is the initial (strong) pre-Elgot monad
|
||||
|
||||
```agda
|
||||
isPreElgot : IsPreElgot monadK
|
||||
|
|
|
@ -70,7 +70,7 @@ open import Monad.Instance.K.Strong
|
|||
The next step is to show that every *KX* satisfies compositionality, meaning that each *KX* is an Elgot algebra.
|
||||
|
||||
```agda
|
||||
open import Monad.Instance.K.Compositionality
|
||||
open import Monad.Instance.K.ElgotAlgebra
|
||||
```
|
||||
|
||||
and with this we can show that K is and equational lifting monad, i.e. a commutative monad satisfying the equational lifting law:
|
||||
|
@ -80,9 +80,9 @@ open import Monad.Instance.K.Commutative
|
|||
open import Monad.Instance.K.EquationalLifting
|
||||
```
|
||||
|
||||
and lastly we formalize the notion of *pre-Elgot monad* and show that **K** is pre-Elgot.
|
||||
and lastly we formalize the notion of *pre-Elgot monad* and show that **K** is the initial pre-Elgot monad.
|
||||
|
||||
```agda
|
||||
open import Monad.ElgotMonad
|
||||
-- open import Monad.Instance.K.PreElgot TODO
|
||||
open import Monad.PreElgot
|
||||
open import Monad.Instance.K.PreElgot
|
||||
```
|
Loading…
Reference in a new issue