mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
minor progress
This commit is contained in:
parent
86e45d7b71
commit
d90381d11a
1 changed files with 7 additions and 36 deletions
|
@ -371,44 +371,15 @@ module Category.Construction.ElgotAlgebras {o ℓ e} {C : Category o ℓ e} wher
|
||||||
eval′ ∘ ((λg (< f > ∘ (((Elgot-Algebra._# A) g) ⁂ id))) ⁂ id) ≈⟨ β′ ⟩
|
eval′ ∘ ((λg (< f > ∘ (((Elgot-Algebra._# A) g) ⁂ id))) ⁂ id) ≈⟨ β′ ⟩
|
||||||
< f > ∘ (((Elgot-Algebra._# A) g) ⁂ id) ≈⟨ {! !} ⟩
|
< f > ∘ (((Elgot-Algebra._# A) g) ⁂ id) ≈⟨ {! !} ⟩
|
||||||
{! !} ≈⟨ {! !} ⟩
|
{! !} ≈⟨ {! !} ⟩
|
||||||
{! !} ≈⟨ {! !} ⟩
|
{! !} ≈˘⟨ {! !} ⟩
|
||||||
|
{! !} ≈˘⟨ {! !} ⟩
|
||||||
|
{! !} ≈˘⟨ {! !} ⟩
|
||||||
|
< f > ∘ ⟨ [ id , (Elgot-Algebra._# A) ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ] ∘ ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) , [ id , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ] ∘ ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ⟩ ≈˘⟨ refl⟩∘⟨ (⟨⟩-cong₂ (Elgot-Algebra.#-Fixpoint A) (Elgot-Algebra.#-Fixpoint B)) ⟩
|
||||||
< f > ∘ ⟨ (Elgot-Algebra._# A) ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ⟩ ≈⟨ Elgot-Algebra-Morphism.preserves f ⟩
|
< f > ∘ ⟨ (Elgot-Algebra._# A) ((π₁ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) , (Elgot-Algebra._# B) ((π₂ +₁ id) ∘ (distributeʳ⁻¹ ∘ (g ⁂ id))) ⟩ ≈⟨ Elgot-Algebra-Morphism.preserves f ⟩
|
||||||
(Elgot-Algebra._# C) ((< f > +₁ id) ∘ distributeʳ⁻¹ ∘ (g ⁂ id)) ≈˘⟨ {! !} ⟩
|
(Elgot-Algebra._# C) ((< f > +₁ id) ∘ distributeʳ⁻¹ ∘ (g ⁂ id)) ≈˘⟨ {! !} ⟩
|
||||||
(Elgot-Algebra._# C) ((eval′ +₁ id) ∘ (((λg < f > ⁂ id) +₁ (id ⁂ id)) ∘ distributeʳ⁻¹) ∘ (g ⁂ id)) ≈˘⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (pullˡ (sym (distributeʳ⁻¹-natural id (λg < f >) id)))) ⟩
|
(Elgot-Algebra._# C) ((eval′ +₁ id) ∘ (((λg < f > ⁂ id) +₁ (id ⁂ id)) ∘ distributeʳ⁻¹) ∘ (g ⁂ id)) ≈˘⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (pullˡ (sym (distributeʳ⁻¹-natural id (λg < f >) id)))) ⟩
|
||||||
(Elgot-Algebra._# C) ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((λg < f > +₁ id) ⁂ id) ∘ (g ⁂ id)) ≈⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²))) ⟩
|
(Elgot-Algebra._# C) ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((λg < f > +₁ id) ⁂ id) ∘ (g ⁂ id)) ≈⟨ Elgot-Algebra.#-resp-≈ C (refl⟩∘⟨ (refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²))) ⟩
|
||||||
(Elgot-Algebra._# C) ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ (((λg < f > +₁ id) ∘ g) ⁂ id)) ∎)
|
(Elgot-Algebra._# C) ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ (((λg < f > +₁ id) ∘ g) ⁂ id)) ∎)
|
||||||
CanonicalCartesianClosed.eval-comp cccc {A} {B} {C} {f} = {! !}
|
CanonicalCartesianClosed.eval-comp cccc {A} {B} {C} {f} = β′
|
||||||
CanonicalCartesianClosed.curry-unique cccc {A} {B} {C} {f} {g} eq = {! !}
|
CanonicalCartesianClosed.curry-unique cccc {A} {B} {C} {f} {g} eq = λ-unique′ eq
|
||||||
-- record
|
|
||||||
-- { ⊤ = Terminal.⊤ Terminal-Elgot-Algebras
|
|
||||||
-- ; _×_ = λ X Y → A×B-Helper {X} {Y}
|
|
||||||
-- ; ! = Terminal.! Terminal-Elgot-Algebras
|
|
||||||
-- ; π₁ = λ {X} {Y} → Product.π₁ (Product-Elgot-Algebras X Y)
|
|
||||||
-- ; π₂ = λ {X} {Y} → Product.π₂ (Product-Elgot-Algebras X Y)
|
|
||||||
-- ; ⟨_,_⟩ = λ {X} {Y} {Z} f g → Product.⟨_,_⟩ (Product-Elgot-Algebras Y Z) f g
|
|
||||||
-- ; !-unique = Terminal.!-unique Terminal-Elgot-Algebras
|
|
||||||
-- ; π₁-comp = λ {X} {Y} {f} {Z} {g} → Product.project₁ (Product-Elgot-Algebras Y Z) {h = f} {i = g}
|
|
||||||
-- ; π₂-comp = λ {X} {Y} {f} {Z} {g} → Product.project₂ (Product-Elgot-Algebras Y Z) {h = f} {i = g}
|
|
||||||
-- ; ⟨,⟩-unique = λ {C} {A} {B} {f} {g} {h} eq₁ eq₂ → Product.unique (Product-Elgot-Algebras A B) {h = h} {i = f} {j = g} eq₁ eq₂
|
|
||||||
-- ; _^_ = λ A X → B^A-Helper {A} {Elgot-Algebra.A X}
|
|
||||||
-- ; eval = λ {A} {B} → record { h = eval′ ; preserves = λ {X} {f} → begin
|
|
||||||
-- eval′ ∘ ⟨ (λg ((Elgot-Algebra._# A) ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((π₁ +₁ id) ∘ f ⁂ id)))) , _ ⟩ ≈˘⟨ refl⟩∘⟨ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityʳ identityˡ) ⟩
|
|
||||||
-- eval′ ∘ ((λg ((Elgot-Algebra._# A) ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((π₁ +₁ id) ∘ f ⁂ id)))) ⁂ id) ∘ ⟨ id , _ ⟩ ≈⟨ pullˡ β′ ⟩
|
|
||||||
-- ((Elgot-Algebra._# A) ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((π₁ +₁ id) ∘ f ⁂ id))) ∘ ⟨ id , _ ⟩ ≈⟨ {! !} ⟩
|
|
||||||
-- (Elgot-Algebra._# A) ((eval′ +₁ id) ∘ f) ∎ } -- ⟨ ((π₁ +₁ id) ∘ h)#ᵃ , ((π₂ +₁ id) ∘ h)#ᵇ ⟩
|
|
||||||
-- ; curry = λ {C} {A} {B} f → record { h = λg (Elgot-Algebra-Morphism.h f) ; preserves = {! !} }
|
|
||||||
-- ; eval-comp = λ {A} {B} {C} {f} → {! !}
|
|
||||||
-- ; curry-unique = λ {A} {B} {C} {f} {g} eq → {! !}
|
|
||||||
-- }
|
|
||||||
|
|
||||||
Exponential-Elgot-Algebras : ∀ (EA EB : Elgot-Algebra) → Exponential Elgot-Algebras EA EB
|
|
||||||
Exponential-Elgot-Algebras EA EB = record
|
|
||||||
{ B^A = B^A-Helper {EA} {Elgot-Algebra.A EB}
|
|
||||||
; product = Product-Elgot-Algebras (B^A-Helper {EA} {Elgot-Algebra.A EB}) EA
|
|
||||||
; eval = record { h = {! eval′ {Elgot-Algebra.A EB} {Elgot-Algebra.A EA} !} ; preserves = {! !} }
|
|
||||||
; λg = {! λ {X} prod → !}
|
|
||||||
; β = {! !}
|
|
||||||
; λ-unique = {! !}
|
|
||||||
}
|
|
||||||
-- TODO instead show canonical ccc
|
|
||||||
```
|
```
|
||||||
|
|
Loading…
Reference in a new issue