Proof that K is initial strong pre-Elgot

This commit is contained in:
Leon Vatthauer 2023-11-20 11:38:33 +01:00
parent d3712d4abd
commit df288fccec
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 212 additions and 9 deletions

View file

@ -34,7 +34,7 @@ open MR C
open M C
```
# K is the initial (strong) pre-Elgot monad
# K is the initial pre-Elgot monad
```agda
isPreElgot : IsPreElgot monadK
@ -47,14 +47,8 @@ isPreElgot = record
preElgot : PreElgotMonad
preElgot = record { T = monadK ; isPreElgot = isPreElgot }
strongPreElgot : IsStrongPreElgot KStrong
strongPreElgot = record
{ preElgot = isPreElgot
; strengthen-preserves = τ-comm
}
initialPreElgot : IsInitial PreElgotMonads preElgot
initialPreElgot = record
isInitialPreElgot : IsInitial PreElgotMonads preElgot
isInitialPreElgot = record
{ ! = !
; !-unique = !-unique
}

View file

@ -0,0 +1,209 @@
<!--
```agda
open import Level
open import Category.Instance.AmbientCategory
open import Categories.FreeObjects.Free
open import Categories.Object.Initial
open import Categories.NaturalTransformation
open import Categories.NaturalTransformation.Equivalence
open import Categories.Monad
open import Categories.Monad.Strong
open import Categories.Monad.Relative renaming (Monad to RMonad)
open import Categories.Monad.Construction.Kleisli
open import Data.Product using (_,_)
open import Categories.Functor.Core
import Monad.Instance.K as MIK
```
-->
```agda
module Monad.Instance.K.StrongPreElgot {o e} (ambient : Ambient o e) (MK : MIK.MonadK ambient) where
open Ambient ambient
open MIK ambient
open MonadK MK
open import Algebra.ElgotAlgebra ambient
open import Algebra.UniformIterationAlgebra ambient
open import Monad.PreElgot ambient
open import Monad.Instance.K ambient
open import Monad.Instance.K.ElgotAlgebra ambient MK
open import Monad.Instance.K.Commutative ambient MK
open import Monad.Instance.K.Strong ambient MK
open import Monad.Instance.K.PreElgot ambient MK
open import Category.Construction.StrongPreElgotMonads ambient
open import Category.Construction.ElgotAlgebras ambient
open import Algebra.Properties ambient
open Equiv
open HomReasoning
open MR C
open M C
```
# K is the initial strong pre-Elgot monad
```agda
isStrongPreElgot : IsStrongPreElgot KStrong
isStrongPreElgot = record
{ preElgot = isPreElgot
; strengthen-preserves = τ-comm
}
strongPreElgot : StrongPreElgotMonad
strongPreElgot = record
{ SM = KStrong
; isStrongPreElgot = isStrongPreElgot
}
isInitialStrongPreElgot : IsInitial StrongPreElgotMonads strongPreElgot
isInitialStrongPreElgot = record { ! = ! ; !-unique = !-unique }
where
! : ∀ {A : StrongPreElgotMonad} → StrongPreElgotMonad-Morphism strongPreElgot A
! {A} = record
{ α = ntHelper (record { η = η' ; commute = commute })
; α-η = α
; α-μ = α
; α-strength = α-strength
; α-preserves = λ {X} {B} f → Elgot-Algebra-Morphism.preserves (((freeElgot B) FreeObject.*) {A = record { A = T.F.F₀ B ; algebra = StrongPreElgotMonad.elgotalgebras A }} (T.η.η B))
}
where
open StrongPreElgotMonad A using (SM)
module SM = StrongMonad SM
open SM using (strengthen) renaming (M to T)
open RMonad (Monad⇒Kleisli C T) using (extend)
open monadK using () renaming (η to ηK; μ to μK)
open strongK using () renaming (strengthen to strengthenK)
open Elgot-Algebra-on using (#-resp-≈)
T-Alg : ∀ (X : Obj) → Elgot-Algebra
T-Alg X = record { A = T.F.₀ X ; algebra = StrongPreElgotMonad.elgotalgebras A }
K-Alg : ∀ (X : Obj) → Elgot-Algebra
K-Alg X = record { A = K.₀ X ; algebra = elgot X }
η' : ∀ (X : Obj) → K.₀ X ⇒ T.F.₀ X
η' X = Elgot-Algebra-Morphism.h (_* {A = T-Alg X} (T.η.η X))
where open FreeObject (freeElgot X)
_#K = λ {B} {C} f → Elgot-Algebra._# (FreeObject.FX (freeElgot C)) {B} f
_#T = λ {B} {C} f → StrongPreElgotMonad.elgotalgebras._# A {B} {C} f
-- some preservation facts that follow immediately, since these things are elgot-algebra-morphisms.
K₁-preserves : ∀ {X Y Z : Obj} (f : X ⇒ Y) (g : Z ⇒ K.₀ X + Z) → K.₁ f ∘ (g #K) ≈ ((K.₁ f +₁ idC) ∘ g) #K
K₁-preserves {X} {Y} {Z} f g = Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) {A = K-Alg Y} (ηK.η _ ∘ f))
μK-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ (K.₀ X) + Y) → μK.η X ∘ g #K ≈ ((μK.η X +₁ idC) ∘ g) #K
μK-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freeElgot (K.₀ X)) FreeObject.*) {A = K-Alg X} idC)
η'-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ X + Y) → η' X ∘ g #K ≈ ((η' X +₁ idC) ∘ g) #T
η'-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) {A = T-Alg X} (T.η.η X))
commute : ∀ {X Y : Obj} (f : X ⇒ Y) → η' Y ∘ K.₁ f ≈ T.F.₁ f ∘ η' X
commute {X} {Y} f = begin
η' Y ∘ K.₁ f ≈⟨ FreeObject.*-uniq
(freeElgot X)
{A = T-Alg Y}
(T.F.₁ f ∘ T.η.η X)
(record { h = η' Y ∘ K.₁ f ; preserves = pres₁ })
comm₁ ⟩
Elgot-Algebra-Morphism.h (FreeObject._* (freeElgot X) {A = T-Alg Y} (T.F.₁ f ∘ T.η.η _)) ≈⟨ sym (FreeObject.*-uniq
(freeElgot X)
{A = T-Alg Y}
(T.F.₁ f ∘ T.η.η X)
(record { h = T.F.₁ f ∘ η' X ; preserves = pres₂ })
(pullʳ (FreeObject.*-lift (freealgebras X) (T.η.η X)))) ⟩
T.F.₁ f ∘ η' X ∎
where
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (η' Y ∘ K.₁ f) ∘ g #K ≈ ((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T
pres₁ {Z} {g} = begin
(η' Y ∘ K.₁ f) ∘ (g #K) ≈⟨ pullʳ (K₁-preserves f g) ⟩
η' Y ∘ (((K.₁ f +₁ idC) ∘ g) #K) ≈⟨ η'-preserves ((K.₁ f +₁ idC) ∘ g) ⟩
(((η' Y +₁ idC) ∘ (K.₁ f +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (T.F.₁ f ∘ η' X) ∘ g #K ≈ ((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T
pres₂ {Z} {g} = begin
(T.F.₁ f ∘ η' X) ∘ g #K ≈⟨ pullʳ (η'-preserves g) ⟩
T.F.₁ f ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ (sym (F₁⇒extend T f)) ⟩∘⟨refl ⟩
extend (T.η.η Y ∘ f) ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ sym (StrongPreElgotMonad.extend-preserves A ((η' X +₁ idC) ∘ g) (T.η.η Y ∘ f)) ⟩
(((extend (T.η.η Y ∘ f) +₁ idC) ∘ (η' X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((F₁⇒extend T f) ⟩∘⟨refl) identity²)) ⟩
((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T
comm₁ : (η' Y ∘ K.₁ f) ∘ _ ≈ T.F.₁ f ∘ T.η.η X
comm₁ = begin
(η' Y ∘ K.₁ f) ∘ _ ≈⟨ pullʳ (K₁η f) ⟩
η' Y ∘ ηK.η _ ∘ f ≈⟨ pullˡ (FreeObject.*-lift (freealgebras Y) (T.η.η Y)) ⟩
T.η.η Y ∘ f ≈⟨ NaturalTransformation.commute T.η f ⟩
T.F.₁ f ∘ T.η.η X ∎
α-η : ∀ {X : Obj} → η' X ∘ ηK.η X ≈ T.η.η X
α-η {X} = FreeObject.*-lift (freealgebras X) (T.η.η X)
α-μ : ∀ {X : Obj} → η' X ∘ μK.η X ≈ T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)
α-μ {X} = begin
η' X ∘ μK.η X ≈⟨ FreeObject.*-uniq
(freeElgot (K.₀ X))
{A = T-Alg X}
(η' X)
(record { h = η' X ∘ μK.η X ; preserves = pres₁ })
(cancelʳ monadK.identityʳ) ⟩
Elgot-Algebra-Morphism.h (((freeElgot (K.₀ X)) FreeObject.*) {A = T-Alg X} (η' X)) ≈⟨ sym (FreeObject.*-uniq
(freeElgot (K.₀ X))
{A = T-Alg X}
(η' X)
(record { h = T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ; preserves = pres₂ })
comm) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ∎
where
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (η' X ∘ μK.η X) ∘ g #K ≈ ((η' X ∘ μK.η X +₁ idC) ∘ g) #T
pres₁ {Z} {g} = begin
(η' X ∘ μK.η X) ∘ (g #K) ≈⟨ pullʳ (μK-preserves g) ⟩
η' X ∘ ((μK.η X +₁ idC) ∘ g) #K ≈⟨ η'-preserves ((μK.η X +₁ idC) ∘ g) ⟩
(((η' X +₁ idC) ∘ (μK.η X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
(((η' X ∘ μK.η X +₁ idC) ∘ g) #T) ∎
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ g #K ≈ ((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T
pres₂ {Z} {g} = begin
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ (g #K) ≈⟨ pullʳ (pullʳ (η'-preserves g)) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ (((η' (K.₀ X) +₁ idC) ∘ g) #T) ≈⟨ refl⟩∘⟨ ((sym (F₁⇒extend T (η' X))) ⟩∘⟨refl ○ sym (StrongPreElgotMonad.extend-preserves A ((η' (K.₀ X) +₁ idC) ∘ g) (T.η.η (T.F.F₀ X) ∘ η' X)) )⟩
T.μ.η X ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ (sym (elimʳ T.F.identity)) ⟩∘⟨refl ⟩
extend idC ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ sym (StrongPreElgotMonad.extend-preserves A ((extend (T.η.η (T.F.F₀ X) ∘ η' X) +₁ idC) ∘ (η' (K.₀ X) +₁ idC) ∘ g) idC) ⟩
(((extend idC +₁ idC) ∘ (extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((elimʳ T.F.identity) ⟩∘⟨ (F₁⇒extend T (η' X))) identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) +₁ idC) ∘ (η' _ +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ assoc identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T) ∎
comm : (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈ η' X
comm = begin
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈⟨ (refl⟩∘⟨ sym (commute (η' X))) ⟩∘⟨refl ⟩
(T.μ.η X ∘ η' _ ∘ K.₁ (η' X)) ∘ ηK.η (K.₀ X) ≈⟨ assoc ○ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ sym (monadK.η.commute (η' X))) ⟩
T.μ.η X ∘ η' _ ∘ ηK.η (T.F.F₀ X) ∘ η' X ≈⟨ refl⟩∘⟨ (pullˡ (FreeObject.*-lift (freealgebras _) (T.η.η _))) ⟩
T.μ.η X ∘ T.η.η _ ∘ η' X ≈⟨ cancelˡ (Monad.identityʳ T) ⟩
η' X ∎
α-strength : ∀ {X Y : Obj} → η' (X × Y) ∘ strengthenK.η (X , Y) ≈ strengthen.η (X , Y) ∘ (idC ⁂ η' Y)
α-strength {X} {Y} = begin
η' (X × Y) ∘ strengthenK.η (X , Y) ≈⟨ IsStableFreeUniformIterationAlgebra.♯-unique (stable Y) (T.η.η (X × Y)) (η' (X × Y) ∘ strengthenK.η (X , Y)) (sym pres₁) pres₃ ⟩
IsStableFreeUniformIterationAlgebra.[ (stable Y) , Functor.₀ elgot-to-uniformF (T-Alg (X × Y)) ]♯ (T.η.η (X × Y)) ≈⟨ sym (IsStableFreeUniformIterationAlgebra.♯-unique (stable Y) (T.η.η (X × Y)) (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) (sym pres₂) pres₄) ⟩
strengthen.η (X , Y) ∘ (idC ⁂ η' Y) ∎
where
pres₁ : (η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ ηK.η Y) ≈ T.η.η (X × Y)
pres₁ = begin
(η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ ηK.η Y) ≈⟨ pullʳ (τ-η (X , Y)) ⟩
η' (X × Y) ∘ ηK.η (X × Y) ≈⟨ α-η ⟩
T.η.η (X × Y) ∎
pres₂ : (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ ηK.η Y) ≈ T.η.η (X × Y)
pres₂ = begin
(strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ ηK.η Y) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² α-η) ⟩
strengthen.η (X , Y) ∘ (idC ⁂ T.η.η Y) ≈⟨ SM.η-comm ⟩
T.η.η (X × Y) ∎
pres₃ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ h #K) ≈ ((η' (X × Y) ∘ strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
pres₃ {Z} h = begin
(η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ h #K) ≈⟨ pullʳ (τ-comm h) ⟩
η' (X × Y) ∘ ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #K ≈⟨ η'-preserves ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ⟩
((η' (X × Y) +₁ idC) ∘ (strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((η' (X × Y) ∘ strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
pres₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ h #K) ≈ ((strengthen.η (X , Y) ∘ (idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
pres₄ {Z} h = begin
(strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ h #K) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² (η'-preserves h)) ⟩
strengthen.η (X , Y) ∘ (idC ⁂ ((η' Y +₁ idC) ∘ h) #T) ≈⟨ StrongPreElgotMonad.strengthen-preserves A ((η' Y +₁ idC) ∘ h) ⟩
((strengthen.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (η' Y +₁ idC) ∘ h)) #T ≈⟨ sym (#-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (refl⟩∘⟨ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)))) ⟩
(((strengthen.η (X , Y) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (idC ⁂ (η' Y +₁ idC))) ∘ (idC ⁂ h)) #T) ≈⟨ sym (#-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (refl⟩∘⟨ (pullˡ ((+₁-cong₂ refl (sym (⟨⟩-unique id-comm id-comm))) ⟩∘⟨refl ○ distribute₁ idC (η' Y) idC)))) ⟩
-- ((strengthen.η (X , Y) +₁ idC) ∘ ((idC ⁂ η' Y) +₁ (idC ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ {! !} ⟩
((strengthen.η (X , Y) +₁ idC) ∘ ((idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((strengthen.η (X , Y) ∘ (idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
!-unique : ∀ {A : StrongPreElgotMonad} (f : StrongPreElgotMonad-Morphism strongPreElgot A) → StrongPreElgotMonad-Morphism.α (! {A = A}) ≃ StrongPreElgotMonad-Morphism.α f
!-unique {A} f {X} = sym (FreeObject.*-uniq
(freeElgot X)
{A = record { A = T.F.F₀ X ; algebra = StrongPreElgotMonad.elgotalgebras A }}
(T.η.η X)
(record { h = α.η X ; preserves = α-preserves _ })
α-η)
where
open StrongPreElgotMonad-Morphism f using (α; α-η; α-preserves)
open StrongPreElgotMonad A using (SM)
open StrongMonad SM using () renaming (M to T)
```