mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
✨ Proof that K is initial strong pre-Elgot
This commit is contained in:
parent
d3712d4abd
commit
df288fccec
2 changed files with 212 additions and 9 deletions
|
@ -34,7 +34,7 @@ open MR C
|
||||||
open M C
|
open M C
|
||||||
```
|
```
|
||||||
|
|
||||||
# K is the initial (strong) pre-Elgot monad
|
# K is the initial pre-Elgot monad
|
||||||
|
|
||||||
```agda
|
```agda
|
||||||
isPreElgot : IsPreElgot monadK
|
isPreElgot : IsPreElgot monadK
|
||||||
|
@ -47,14 +47,8 @@ isPreElgot = record
|
||||||
preElgot : PreElgotMonad
|
preElgot : PreElgotMonad
|
||||||
preElgot = record { T = monadK ; isPreElgot = isPreElgot }
|
preElgot = record { T = monadK ; isPreElgot = isPreElgot }
|
||||||
|
|
||||||
strongPreElgot : IsStrongPreElgot KStrong
|
isInitialPreElgot : IsInitial PreElgotMonads preElgot
|
||||||
strongPreElgot = record
|
isInitialPreElgot = record
|
||||||
{ preElgot = isPreElgot
|
|
||||||
; strengthen-preserves = τ-comm
|
|
||||||
}
|
|
||||||
|
|
||||||
initialPreElgot : IsInitial PreElgotMonads preElgot
|
|
||||||
initialPreElgot = record
|
|
||||||
{ ! = !′
|
{ ! = !′
|
||||||
; !-unique = !-unique′
|
; !-unique = !-unique′
|
||||||
}
|
}
|
||||||
|
|
209
src/Monad/Instance/K/StrongPreElgot.lagda.md
Normal file
209
src/Monad/Instance/K/StrongPreElgot.lagda.md
Normal file
|
@ -0,0 +1,209 @@
|
||||||
|
<!--
|
||||||
|
```agda
|
||||||
|
open import Level
|
||||||
|
open import Category.Instance.AmbientCategory
|
||||||
|
open import Categories.FreeObjects.Free
|
||||||
|
open import Categories.Object.Initial
|
||||||
|
open import Categories.NaturalTransformation
|
||||||
|
open import Categories.NaturalTransformation.Equivalence
|
||||||
|
open import Categories.Monad
|
||||||
|
open import Categories.Monad.Strong
|
||||||
|
open import Categories.Monad.Relative renaming (Monad to RMonad)
|
||||||
|
open import Categories.Monad.Construction.Kleisli
|
||||||
|
open import Data.Product using (_,_)
|
||||||
|
open import Categories.Functor.Core
|
||||||
|
import Monad.Instance.K as MIK
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
|
||||||
|
```agda
|
||||||
|
module Monad.Instance.K.StrongPreElgot {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
|
||||||
|
open Ambient ambient
|
||||||
|
open MIK ambient
|
||||||
|
open MonadK MK
|
||||||
|
open import Algebra.ElgotAlgebra ambient
|
||||||
|
open import Algebra.UniformIterationAlgebra ambient
|
||||||
|
open import Monad.PreElgot ambient
|
||||||
|
open import Monad.Instance.K ambient
|
||||||
|
open import Monad.Instance.K.ElgotAlgebra ambient MK
|
||||||
|
open import Monad.Instance.K.Commutative ambient MK
|
||||||
|
open import Monad.Instance.K.Strong ambient MK
|
||||||
|
open import Monad.Instance.K.PreElgot ambient MK
|
||||||
|
open import Category.Construction.StrongPreElgotMonads ambient
|
||||||
|
open import Category.Construction.ElgotAlgebras ambient
|
||||||
|
open import Algebra.Properties ambient
|
||||||
|
|
||||||
|
open Equiv
|
||||||
|
open HomReasoning
|
||||||
|
open MR C
|
||||||
|
open M C
|
||||||
|
```
|
||||||
|
|
||||||
|
# K is the initial strong pre-Elgot monad
|
||||||
|
|
||||||
|
```agda
|
||||||
|
isStrongPreElgot : IsStrongPreElgot KStrong
|
||||||
|
isStrongPreElgot = record
|
||||||
|
{ preElgot = isPreElgot
|
||||||
|
; strengthen-preserves = τ-comm
|
||||||
|
}
|
||||||
|
|
||||||
|
strongPreElgot : StrongPreElgotMonad
|
||||||
|
strongPreElgot = record
|
||||||
|
{ SM = KStrong
|
||||||
|
; isStrongPreElgot = isStrongPreElgot
|
||||||
|
}
|
||||||
|
|
||||||
|
isInitialStrongPreElgot : IsInitial StrongPreElgotMonads strongPreElgot
|
||||||
|
isInitialStrongPreElgot = record { ! = !′ ; !-unique = !-unique′ }
|
||||||
|
where
|
||||||
|
!′ : ∀ {A : StrongPreElgotMonad} → StrongPreElgotMonad-Morphism strongPreElgot A
|
||||||
|
!′ {A} = record
|
||||||
|
{ α = ntHelper (record { η = η' ; commute = commute })
|
||||||
|
; α-η = α-η
|
||||||
|
; α-μ = α-μ
|
||||||
|
; α-strength = α-strength
|
||||||
|
; α-preserves = λ {X} {B} f → Elgot-Algebra-Morphism.preserves (((freeElgot B) FreeObject.*) {A = record { A = T.F.F₀ B ; algebra = StrongPreElgotMonad.elgotalgebras A }} (T.η.η B))
|
||||||
|
}
|
||||||
|
where
|
||||||
|
open StrongPreElgotMonad A using (SM)
|
||||||
|
module SM = StrongMonad SM
|
||||||
|
open SM using (strengthen) renaming (M to T)
|
||||||
|
open RMonad (Monad⇒Kleisli C T) using (extend)
|
||||||
|
open monadK using () renaming (η to ηK; μ to μK)
|
||||||
|
open strongK using () renaming (strengthen to strengthenK)
|
||||||
|
open Elgot-Algebra-on using (#-resp-≈)
|
||||||
|
T-Alg : ∀ (X : Obj) → Elgot-Algebra
|
||||||
|
T-Alg X = record { A = T.F.₀ X ; algebra = StrongPreElgotMonad.elgotalgebras A }
|
||||||
|
K-Alg : ∀ (X : Obj) → Elgot-Algebra
|
||||||
|
K-Alg X = record { A = K.₀ X ; algebra = elgot X }
|
||||||
|
η' : ∀ (X : Obj) → K.₀ X ⇒ T.F.₀ X
|
||||||
|
η' X = Elgot-Algebra-Morphism.h (_* {A = T-Alg X} (T.η.η X))
|
||||||
|
where open FreeObject (freeElgot X)
|
||||||
|
_#K = λ {B} {C} f → Elgot-Algebra._# (FreeObject.FX (freeElgot C)) {B} f
|
||||||
|
_#T = λ {B} {C} f → StrongPreElgotMonad.elgotalgebras._# A {B} {C} f
|
||||||
|
-- some preservation facts that follow immediately, since these things are elgot-algebra-morphisms.
|
||||||
|
K₁-preserves : ∀ {X Y Z : Obj} (f : X ⇒ Y) (g : Z ⇒ K.₀ X + Z) → K.₁ f ∘ (g #K) ≈ ((K.₁ f +₁ idC) ∘ g) #K
|
||||||
|
K₁-preserves {X} {Y} {Z} f g = Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) {A = K-Alg Y} (ηK.η _ ∘ f))
|
||||||
|
μK-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ (K.₀ X) + Y) → μK.η X ∘ g #K ≈ ((μK.η X +₁ idC) ∘ g) #K
|
||||||
|
μK-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freeElgot (K.₀ X)) FreeObject.*) {A = K-Alg X} idC)
|
||||||
|
η'-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ X + Y) → η' X ∘ g #K ≈ ((η' X +₁ idC) ∘ g) #T
|
||||||
|
η'-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) {A = T-Alg X} (T.η.η X))
|
||||||
|
commute : ∀ {X Y : Obj} (f : X ⇒ Y) → η' Y ∘ K.₁ f ≈ T.F.₁ f ∘ η' X
|
||||||
|
commute {X} {Y} f = begin
|
||||||
|
η' Y ∘ K.₁ f ≈⟨ FreeObject.*-uniq
|
||||||
|
(freeElgot X)
|
||||||
|
{A = T-Alg Y}
|
||||||
|
(T.F.₁ f ∘ T.η.η X)
|
||||||
|
(record { h = η' Y ∘ K.₁ f ; preserves = pres₁ })
|
||||||
|
comm₁ ⟩
|
||||||
|
Elgot-Algebra-Morphism.h (FreeObject._* (freeElgot X) {A = T-Alg Y} (T.F.₁ f ∘ T.η.η _)) ≈⟨ sym (FreeObject.*-uniq
|
||||||
|
(freeElgot X)
|
||||||
|
{A = T-Alg Y}
|
||||||
|
(T.F.₁ f ∘ T.η.η X)
|
||||||
|
(record { h = T.F.₁ f ∘ η' X ; preserves = pres₂ })
|
||||||
|
(pullʳ (FreeObject.*-lift (freealgebras X) (T.η.η X)))) ⟩
|
||||||
|
T.F.₁ f ∘ η' X ∎
|
||||||
|
where
|
||||||
|
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (η' Y ∘ K.₁ f) ∘ g #K ≈ ((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T
|
||||||
|
pres₁ {Z} {g} = begin
|
||||||
|
(η' Y ∘ K.₁ f) ∘ (g #K) ≈⟨ pullʳ (K₁-preserves f g) ⟩
|
||||||
|
η' Y ∘ (((K.₁ f +₁ idC) ∘ g) #K) ≈⟨ η'-preserves ((K.₁ f +₁ idC) ∘ g) ⟩
|
||||||
|
(((η' Y +₁ idC) ∘ (K.₁ f +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T ∎
|
||||||
|
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (T.F.₁ f ∘ η' X) ∘ g #K ≈ ((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T
|
||||||
|
pres₂ {Z} {g} = begin
|
||||||
|
(T.F.₁ f ∘ η' X) ∘ g #K ≈⟨ pullʳ (η'-preserves g) ⟩
|
||||||
|
T.F.₁ f ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ (sym (F₁⇒extend T f)) ⟩∘⟨refl ⟩
|
||||||
|
extend (T.η.η Y ∘ f) ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ sym (StrongPreElgotMonad.extend-preserves A ((η' X +₁ idC) ∘ g) (T.η.η Y ∘ f)) ⟩
|
||||||
|
(((extend (T.η.η Y ∘ f) +₁ idC) ∘ (η' X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((F₁⇒extend T f) ⟩∘⟨refl) identity²)) ⟩
|
||||||
|
((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T ∎
|
||||||
|
comm₁ : (η' Y ∘ K.₁ f) ∘ _ ≈ T.F.₁ f ∘ T.η.η X
|
||||||
|
comm₁ = begin
|
||||||
|
(η' Y ∘ K.₁ f) ∘ _ ≈⟨ pullʳ (K₁η f) ⟩
|
||||||
|
η' Y ∘ ηK.η _ ∘ f ≈⟨ pullˡ (FreeObject.*-lift (freealgebras Y) (T.η.η Y)) ⟩
|
||||||
|
T.η.η Y ∘ f ≈⟨ NaturalTransformation.commute T.η f ⟩
|
||||||
|
T.F.₁ f ∘ T.η.η X ∎
|
||||||
|
α-η : ∀ {X : Obj} → η' X ∘ ηK.η X ≈ T.η.η X
|
||||||
|
α-η {X} = FreeObject.*-lift (freealgebras X) (T.η.η X)
|
||||||
|
α-μ : ∀ {X : Obj} → η' X ∘ μK.η X ≈ T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)
|
||||||
|
α-μ {X} = begin
|
||||||
|
η' X ∘ μK.η X ≈⟨ FreeObject.*-uniq
|
||||||
|
(freeElgot (K.₀ X))
|
||||||
|
{A = T-Alg X}
|
||||||
|
(η' X)
|
||||||
|
(record { h = η' X ∘ μK.η X ; preserves = pres₁ })
|
||||||
|
(cancelʳ monadK.identityʳ) ⟩
|
||||||
|
Elgot-Algebra-Morphism.h (((freeElgot (K.₀ X)) FreeObject.*) {A = T-Alg X} (η' X)) ≈⟨ sym (FreeObject.*-uniq
|
||||||
|
(freeElgot (K.₀ X))
|
||||||
|
{A = T-Alg X}
|
||||||
|
(η' X)
|
||||||
|
(record { h = T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ; preserves = pres₂ })
|
||||||
|
comm) ⟩
|
||||||
|
T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ∎
|
||||||
|
where
|
||||||
|
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (η' X ∘ μK.η X) ∘ g #K ≈ ((η' X ∘ μK.η X +₁ idC) ∘ g) #T
|
||||||
|
pres₁ {Z} {g} = begin
|
||||||
|
(η' X ∘ μK.η X) ∘ (g #K) ≈⟨ pullʳ (μK-preserves g) ⟩
|
||||||
|
η' X ∘ ((μK.η X +₁ idC) ∘ g) #K ≈⟨ η'-preserves ((μK.η X +₁ idC) ∘ g) ⟩
|
||||||
|
(((η' X +₁ idC) ∘ (μK.η X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
(((η' X ∘ μK.η X +₁ idC) ∘ g) #T) ∎
|
||||||
|
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ g #K ≈ ((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T
|
||||||
|
pres₂ {Z} {g} = begin
|
||||||
|
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ (g #K) ≈⟨ pullʳ (pullʳ (η'-preserves g)) ⟩
|
||||||
|
T.μ.η X ∘ T.F.₁ (η' X) ∘ (((η' (K.₀ X) +₁ idC) ∘ g) #T) ≈⟨ refl⟩∘⟨ ((sym (F₁⇒extend T (η' X))) ⟩∘⟨refl ○ sym (StrongPreElgotMonad.extend-preserves A ((η' (K.₀ X) +₁ idC) ∘ g) (T.η.η (T.F.F₀ X) ∘ η' X)) )⟩
|
||||||
|
T.μ.η X ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ (sym (elimʳ T.F.identity)) ⟩∘⟨refl ⟩
|
||||||
|
extend idC ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ sym (StrongPreElgotMonad.extend-preserves A ((extend (T.η.η (T.F.F₀ X) ∘ η' X) +₁ idC) ∘ (η' (K.₀ X) +₁ idC) ∘ g) idC) ⟩
|
||||||
|
(((extend idC +₁ idC) ∘ (extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((elimʳ T.F.identity) ⟩∘⟨ (F₁⇒extend T (η' X))) identity²)) ⟩
|
||||||
|
(((T.μ.η X ∘ T.F.₁ (η' X) +₁ idC) ∘ (η' _ +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ assoc identity²)) ⟩
|
||||||
|
(((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T) ∎
|
||||||
|
comm : (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈ η' X
|
||||||
|
comm = begin
|
||||||
|
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈⟨ (refl⟩∘⟨ sym (commute (η' X))) ⟩∘⟨refl ⟩
|
||||||
|
(T.μ.η X ∘ η' _ ∘ K.₁ (η' X)) ∘ ηK.η (K.₀ X) ≈⟨ assoc ○ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ sym (monadK.η.commute (η' X))) ⟩
|
||||||
|
T.μ.η X ∘ η' _ ∘ ηK.η (T.F.F₀ X) ∘ η' X ≈⟨ refl⟩∘⟨ (pullˡ (FreeObject.*-lift (freealgebras _) (T.η.η _))) ⟩
|
||||||
|
T.μ.η X ∘ T.η.η _ ∘ η' X ≈⟨ cancelˡ (Monad.identityʳ T) ⟩
|
||||||
|
η' X ∎
|
||||||
|
α-strength : ∀ {X Y : Obj} → η' (X × Y) ∘ strengthenK.η (X , Y) ≈ strengthen.η (X , Y) ∘ (idC ⁂ η' Y)
|
||||||
|
α-strength {X} {Y} = begin
|
||||||
|
η' (X × Y) ∘ strengthenK.η (X , Y) ≈⟨ IsStableFreeUniformIterationAlgebra.♯-unique (stable Y) (T.η.η (X × Y)) (η' (X × Y) ∘ strengthenK.η (X , Y)) (sym pres₁) pres₃ ⟩
|
||||||
|
IsStableFreeUniformIterationAlgebra.[ (stable Y) , Functor.₀ elgot-to-uniformF (T-Alg (X × Y)) ]♯ (T.η.η (X × Y)) ≈⟨ sym (IsStableFreeUniformIterationAlgebra.♯-unique (stable Y) (T.η.η (X × Y)) (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) (sym pres₂) pres₄) ⟩
|
||||||
|
strengthen.η (X , Y) ∘ (idC ⁂ η' Y) ∎
|
||||||
|
where
|
||||||
|
pres₁ : (η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ ηK.η Y) ≈ T.η.η (X × Y)
|
||||||
|
pres₁ = begin
|
||||||
|
(η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ ηK.η Y) ≈⟨ pullʳ (τ-η (X , Y)) ⟩
|
||||||
|
η' (X × Y) ∘ ηK.η (X × Y) ≈⟨ α-η ⟩
|
||||||
|
T.η.η (X × Y) ∎
|
||||||
|
pres₂ : (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ ηK.η Y) ≈ T.η.η (X × Y)
|
||||||
|
pres₂ = begin
|
||||||
|
(strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ ηK.η Y) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² α-η) ⟩
|
||||||
|
strengthen.η (X , Y) ∘ (idC ⁂ T.η.η Y) ≈⟨ SM.η-comm ⟩
|
||||||
|
T.η.η (X × Y) ∎
|
||||||
|
pres₃ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ h #K) ≈ ((η' (X × Y) ∘ strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
|
||||||
|
pres₃ {Z} h = begin
|
||||||
|
(η' (X × Y) ∘ strengthenK.η (X , Y)) ∘ (idC ⁂ h #K) ≈⟨ pullʳ (τ-comm h) ⟩
|
||||||
|
η' (X × Y) ∘ ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #K ≈⟨ η'-preserves ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ⟩
|
||||||
|
((η' (X × Y) +₁ idC) ∘ (strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
((η' (X × Y) ∘ strengthenK.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ∎
|
||||||
|
pres₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ h #K) ≈ ((strengthen.η (X , Y) ∘ (idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T
|
||||||
|
pres₄ {Z} h = begin
|
||||||
|
(strengthen.η (X , Y) ∘ (idC ⁂ η' Y)) ∘ (idC ⁂ h #K) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² (η'-preserves h)) ⟩
|
||||||
|
strengthen.η (X , Y) ∘ (idC ⁂ ((η' Y +₁ idC) ∘ h) #T) ≈⟨ StrongPreElgotMonad.strengthen-preserves A ((η' Y +₁ idC) ∘ h) ⟩
|
||||||
|
((strengthen.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (η' Y +₁ idC) ∘ h)) #T ≈⟨ sym (#-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (refl⟩∘⟨ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)))) ⟩
|
||||||
|
(((strengthen.η (X , Y) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (idC ⁂ (η' Y +₁ idC))) ∘ (idC ⁂ h)) #T) ≈⟨ sym (#-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (refl⟩∘⟨ (pullˡ ((+₁-cong₂ refl (sym (⟨⟩-unique id-comm id-comm))) ⟩∘⟨refl ○ distribute₁ idC (η' Y) idC)))) ⟩
|
||||||
|
-- ((strengthen.η (X , Y) +₁ idC) ∘ ((idC ⁂ η' Y) +₁ (idC ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ {! !} ⟩
|
||||||
|
((strengthen.η (X , Y) +₁ idC) ∘ ((idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||||
|
((strengthen.η (X , Y) ∘ (idC ⁂ η' Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #T ∎
|
||||||
|
!-unique′ : ∀ {A : StrongPreElgotMonad} (f : StrongPreElgotMonad-Morphism strongPreElgot A) → StrongPreElgotMonad-Morphism.α (!′ {A = A}) ≃ StrongPreElgotMonad-Morphism.α f
|
||||||
|
!-unique′ {A} f {X} = sym (FreeObject.*-uniq
|
||||||
|
(freeElgot X)
|
||||||
|
{A = record { A = T.F.F₀ X ; algebra = StrongPreElgotMonad.elgotalgebras A }}
|
||||||
|
(T.η.η X)
|
||||||
|
(record { h = α.η X ; preserves = α-preserves _ })
|
||||||
|
α-η)
|
||||||
|
where
|
||||||
|
open StrongPreElgotMonad-Morphism f using (α; α-η; α-preserves)
|
||||||
|
open StrongPreElgotMonad A using (SM)
|
||||||
|
open StrongMonad SM using () renaming (M to T)
|
||||||
|
```
|
Loading…
Reference in a new issue