mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Added iota to delay
This commit is contained in:
parent
49e4a0b75b
commit
ecde03dadc
3 changed files with 126 additions and 70 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -1,4 +1,5 @@
|
||||||
*.agdai
|
*.agdai
|
||||||
*.pdf
|
*.pdf
|
||||||
*.log
|
*.log
|
||||||
Everything.agda
|
Everything.agda
|
||||||
|
public/
|
2
Makefile
2
Makefile
|
@ -20,7 +20,7 @@ open:
|
||||||
|
|
||||||
push: all
|
push: all
|
||||||
mv public/Everything.html public/index.html
|
mv public/Everything.html public/index.html
|
||||||
scp -r public hy84coky@cip2a7.cip.cs.fau.de:.www/public
|
scp -r public hy84coky@cip2a7.cip.cs.fau.de:.www/bsc-thesis
|
||||||
|
|
||||||
|
|
||||||
Everything.agda:
|
Everything.agda:
|
||||||
|
|
|
@ -10,10 +10,12 @@ open import Categories.Category.Extensive
|
||||||
open import Categories.Category.BinaryProducts
|
open import Categories.Category.BinaryProducts
|
||||||
open import Categories.Category.Cocartesian
|
open import Categories.Category.Cocartesian
|
||||||
open import Categories.Category.Cartesian
|
open import Categories.Category.Cartesian
|
||||||
open import Categories.Category.Cartesian
|
open import Categories.Category.Cartesian.Bundle
|
||||||
open import Categories.Object.Terminal
|
open import Categories.Object.Terminal
|
||||||
|
open import Categories.Object.Initial
|
||||||
open import Categories.Object.Coproduct
|
open import Categories.Object.Coproduct
|
||||||
open import Categories.Category.Construction.F-Coalgebras
|
open import Categories.Category.Construction.F-Coalgebras
|
||||||
|
open import Categories.Category.Construction.F-Algebras
|
||||||
open import Categories.Functor.Coalgebra
|
open import Categories.Functor.Coalgebra
|
||||||
open import Categories.Functor
|
open import Categories.Functor
|
||||||
open import Categories.Functor.Algebra
|
open import Categories.Functor.Algebra
|
||||||
|
@ -41,11 +43,18 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
|
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
|
||||||
open BinaryProducts products
|
open BinaryProducts products
|
||||||
|
|
||||||
|
CC : CartesianCategory o ℓ e
|
||||||
|
CC = record { U = C ; cartesian = (ExtensiveDistributiveCategory.cartesian ED) }
|
||||||
|
|
||||||
|
open import Categories.Object.NaturalNumbers.Parametrized CC
|
||||||
|
open import Categories.Object.NaturalNumbers.Properties.F-Algebras using (PNNO⇒Initial₂; PNNO-Algebra)
|
||||||
|
|
||||||
open M C
|
open M C
|
||||||
open MR C
|
open MR C
|
||||||
open Equiv
|
open Equiv
|
||||||
open HomReasoning
|
open HomReasoning
|
||||||
open CoLambek
|
open CoLambek
|
||||||
|
open F-Coalgebra-Morphism
|
||||||
```
|
```
|
||||||
### *Proposition 1*: Characterization of the delay monad ***D***
|
### *Proposition 1*: Characterization of the delay monad ***D***
|
||||||
|
|
||||||
|
@ -66,7 +75,7 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
module D A = Functor (delayF A)
|
module D A = Functor (delayF A)
|
||||||
|
|
||||||
module _ (X : Obj) where
|
module _ (X : Obj) where
|
||||||
open Terminal (algebras X) using (⊤; !)
|
open Terminal (algebras X) using (⊤; !; !-unique)
|
||||||
open F-Coalgebra ⊤ renaming (A to DX)
|
open F-Coalgebra ⊤ renaming (A to DX)
|
||||||
|
|
||||||
D₀ = DX
|
D₀ = DX
|
||||||
|
@ -93,6 +102,17 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
|
|
||||||
coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f
|
coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f
|
||||||
coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
|
coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
|
||||||
|
|
||||||
|
module _ (ℕ : ParametrizedNNO) where
|
||||||
|
open ParametrizedNNO ℕ
|
||||||
|
|
||||||
|
iso : X × N ≅ X + X × N
|
||||||
|
iso = Lambek.lambek (record { ⊥ = PNNO-Algebra CC coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ CC coproducts ℕ X })
|
||||||
|
|
||||||
|
ι : X × N ⇒ DX
|
||||||
|
ι = f (! {A = record { A = X × N ; α = _≅_.from iso }})
|
||||||
|
|
||||||
|
|
||||||
monad : Monad C
|
monad : Monad C
|
||||||
monad = Kleisli⇒Monad C (record
|
monad = Kleisli⇒Monad C (record
|
||||||
{ F₀ = D₀
|
{ F₀ = D₀
|
||||||
|
@ -117,8 +137,75 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
[ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
|
[ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
|
||||||
([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ (elimˡ +-η) ⟩∘⟨refl ⟩
|
([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ (elimˡ +-η) ⟩∘⟨refl ⟩
|
||||||
(idC +₁ extend (now X)) ∘ out X ∎ })
|
(idC +₁ extend (now X)) ∘ out X ∎ })
|
||||||
; assoc = {! !}
|
; assoc = λ {X} {Y} {Z} {g} {h} → {! !}
|
||||||
; sym-assoc = {! !}
|
|
||||||
|
-- begin
|
||||||
|
-- extend (extend h ∘ g) ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Z)) ⟩
|
||||||
|
-- out⁻¹ Z ∘ out Z ∘ extend (extend h ∘ g) ≈⟨ refl⟩∘⟨ (pullˡ (commutes (! (algebras Z)))) ⟩
|
||||||
|
-- out⁻¹ Z ∘ ((idC +₁ (f (! (algebras Z)))) ∘ F-Coalgebra.α (alg (extend h ∘ g))) ∘ i₁ ≈⟨ refl⟩∘⟨ (pullʳ inject₁) ⟩
|
||||||
|
-- out⁻¹ Z ∘ (idC +₁ (f (! (algebras Z)))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ extend h ∘ g , i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ pullˡ ∘[] ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ (idC +₁ (f (! (algebras Z)))) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ extend h ∘ g , (idC +₁ (f (! (algebras Z)))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ (idC +₁ (f (! (algebras Z)))) ∘ i₁ , (idC +₁ (f (! (algebras Z)))) ∘ i₂ ∘ i₂ ] ∘ out Z ∘ extend h ∘ g , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ (([]-cong₂ (+₁∘i₁ ○ identityʳ) (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ i₁ , (i₂ ∘ (f (! (algebras Z)))) ∘ i₂ ] ∘ out Z ∘ extend h ∘ g
|
||||||
|
-- , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁
|
||||||
|
-- ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ (refl⟩∘⟨ (pullˡ (pullˡ (commutes (! (algebras Z)))))) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ i₁ , (i₂ ∘ (f (! (algebras Z)))) ∘ i₂ ] ∘ (((idC +₁ f (! (algebras Z))) ∘ F-Coalgebra.α (alg h)) ∘ i₁) ∘ g , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ (refl⟩∘⟨ ((pullʳ inject₁) ⟩∘⟨refl)) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ i₁ , (i₂ ∘ (f (! (algebras Z)))) ∘ i₂ ] ∘ ((idC +₁ f (! (algebras Z))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h , i₂ ∘ i₁ ] ∘ out Y) ∘ g , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ (pullˡ (pullˡ []∘+₁)) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ ([ i₁ ∘ idC , ((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z)) ] ∘ ([ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h , i₂ ∘ i₁ ] ∘ out Y)) ∘ g , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ ((pullˡ ∘[]) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ ([ [ i₁ ∘ idC , ((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z)) ] ∘ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h , [ i₁ ∘ idC , ((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z)) ] ∘ i₂ ∘ i₁ ] ∘ out Y) ∘ g , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ ((([]-cong₂ (pullˡ ∘[]) (pullˡ inject₂)) ⟩∘⟨refl) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ ([ [ [ i₁ ∘ idC , ((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z)) ] ∘ i₁ , [ i₁ ∘ idC , ((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z)) ] ∘ i₂ ∘ i₂ ] ∘ out Z ∘ h , (((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z))) ∘ i₁ ] ∘ out Y) ∘ g , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ (([]-cong₂ ((([]-cong₂ (([]-cong₂ inject₁ (pullˡ inject₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ ([ [ i₁ ∘ idC , (((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z))) ∘ i₂ ] ∘ out Z ∘ h , (((i₂ ∘ (f (! (algebras Z)))) ∘ i₂) ∘ f (! (algebras Z))) ∘ i₁ ] ∘ out Y) ∘ g
|
||||||
|
-- , (i₂ ∘ (f (! (algebras Z)))) ∘ i₁
|
||||||
|
-- ] ∘ out X ≈⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈˘⟨ {! _○_ !} ⟩
|
||||||
|
-- {! !} ≈˘⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈˘⟨ {! !} ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ [ i₁ , (i₂ ∘ f (! (algebras Z))) ∘ i₂ ] ∘ out Z ∘ h , (((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y))) ∘ i₂ ] ∘ out Y ∘ g
|
||||||
|
-- , (((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y))) ∘ i₁
|
||||||
|
-- ] ∘ out X ≈˘⟨ refl⟩∘⟨ (([]-cong₂ (([]-cong₂ inject₁ (pullˡ inject₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ [ [ i₁ , (i₂ ∘ f (! (algebras Z))) ∘ i₂ ] ∘ out Z ∘ h , ((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y)) ] ∘ i₁ , [ [ i₁ , (i₂ ∘ f (! (algebras Z))) ∘ i₂ ] ∘ out Z ∘ h , ((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y)) ] ∘ i₂ ∘ i₂ ] ∘ out Y ∘ g
|
||||||
|
-- , (((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y))) ∘ i₁ ] ∘ out X ≈˘⟨ refl⟩∘⟨ (([]-cong₂ (pullˡ ∘[]) (pullˡ inject₂)) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ [ i₁ , (i₂ ∘ f (! (algebras Z))) ∘ i₂ ] ∘ out Z ∘ h , ((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y)) ] ∘ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g
|
||||||
|
-- , [ [ i₁ , (i₂ ∘ f (! (algebras Z))) ∘ i₂ ] ∘ out Z ∘ h , ((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y)) ] ∘ i₂ ∘ i₁ ] ∘ out X ≈˘⟨ refl⟩∘⟨ (pullˡ ∘[]) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ i₁ , (i₂ ∘ f (! (algebras Z))) ∘ i₂ ] ∘ out Z ∘ h , ((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y)) ] ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g , i₂ ∘ i₁ ] ∘ out X ≈˘⟨ refl⟩∘⟨ (([]-cong₂ (([]-cong₂ (+₁∘i₁ ○ identityʳ) (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ (idC +₁ f (! (algebras Z))) ∘ i₁ , (idC +₁ f (! (algebras Z))) ∘ i₂ ∘ i₂ ] ∘ out Z ∘ h , ((i₂ ∘ f (! (algebras Z))) ∘ i₁) ∘ f (! (algebras Y)) ] ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g , i₂ ∘ i₁ ] ∘ out X ≈˘⟨ refl⟩∘⟨ (([]-cong₂ ((refl⟩∘⟨ identityʳ) ○ (pullˡ ∘[])) (pullˡ (pullˡ +₁∘i₂))) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ (idC +₁ f (! (algebras Z))) ∘ ([ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h) ∘ idC , (idC +₁ f (! (algebras Z))) ∘ (i₂ ∘ i₁) ∘ f (! (algebras Y)) ] ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g , i₂ ∘ i₁ ] ∘ out X ≈˘⟨ refl⟩∘⟨ (pullˡ ∘[]) ⟩
|
||||||
|
-- out⁻¹ Z ∘ (idC +₁ f (! (algebras Z))) ∘ [ ([ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h) ∘ idC , (i₂ ∘ i₁) ∘ f (! (algebras Y)) ] ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g , i₂ ∘ i₁ ] ∘ out X ≈˘⟨ refl⟩∘⟨ (refl⟩∘⟨ (pullˡ []∘+₁)) ⟩
|
||||||
|
-- out⁻¹ Z ∘ (idC +₁ f (! (algebras Z))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h , i₂ ∘ i₁ ]
|
||||||
|
-- ∘ (idC +₁ f (! (algebras Y))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g , i₂ ∘ i₁ ] ∘ out X ≈˘⟨ refl⟩∘⟨ (refl⟩∘⟨ (refl⟩∘⟨ identityˡ)) ⟩
|
||||||
|
-- out⁻¹ Z ∘ (idC +₁ f (! (algebras Z))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h , i₂ ∘ i₁ ] ∘ idC
|
||||||
|
-- ∘ (idC +₁ f (! (algebras Y))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g , i₂ ∘ i₁ ] ∘ out X ≈˘⟨ pullʳ (pullʳ (pullʳ (pullˡ (_≅_.isoʳ (out-≅ Y))))) ⟩
|
||||||
|
-- (out⁻¹ Z ∘ (idC +₁ f (! (algebras Z))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Z ∘ h , i₂ ∘ i₁ ] ∘ out Y)
|
||||||
|
-- ∘ (out⁻¹ Y ∘ (idC +₁ f (! (algebras Y))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ out Y ∘ g , i₂ ∘ i₁ ] ∘ out X) ≈˘⟨ (refl⟩∘⟨ (pullʳ inject₁)) ⟩∘⟨ (refl⟩∘⟨ (pullʳ inject₁)) ⟩
|
||||||
|
-- (out⁻¹ Z ∘ ((idC +₁ (f (! (algebras Z)))) ∘ F-Coalgebra.α (alg h)) ∘ i₁) ∘ (out⁻¹ Y ∘ ((idC +₁ (f (! (algebras Y)))) ∘ F-Coalgebra.α (alg g)) ∘ i₁) ≈˘⟨ (refl⟩∘⟨ (pullˡ (commutes (! (algebras Z))))) ⟩∘⟨ refl⟩∘⟨ (pullˡ (commutes (! (algebras Y)))) ⟩
|
||||||
|
-- (out⁻¹ Z ∘ out Z ∘ extend h) ∘ (out⁻¹ Y ∘ out Y ∘ extend g) ≈˘⟨ ((insertˡ (_≅_.isoˡ (out-≅ Z)))) ⟩∘⟨ ((insertˡ (_≅_.isoˡ (out-≅ Y)))) ⟩
|
||||||
|
-- extend h ∘ extend g ∎
|
||||||
|
|
||||||
|
|
||||||
|
-- begin
|
||||||
|
-- extend (extend h ∘ g) ≈⟨ (insertˡ (_≅_.isoˡ (out-≅ Z))) ⟩
|
||||||
|
-- out⁻¹ Z ∘ out Z ∘ extend (extend h ∘ g) ≈⟨ refl⟩∘⟨ extendlaw (extend h ∘ g) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ out Z ∘ extend h ∘ g , i₂ ∘ extend (extend h ∘ g) ] ∘ out X ≈⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈˘⟨ {! !} ⟩
|
||||||
|
-- {! !} ≈˘⟨ {! !} ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y ∘ g , (i₂ ∘ extend h) ∘ extend g ] ∘ out X ≈˘⟨ refl⟩∘⟨ (([]-cong₂ refl (pullˡ inject₂)) ⟩∘⟨refl) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ [ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y ∘ g , [ out Z ∘ h , i₂ ∘ extend h ] ∘ i₂ ∘ extend g ] ∘ out X ≈˘⟨ refl⟩∘⟨ (pullˡ ∘[]) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ out Z ∘ h , i₂ ∘ extend h ] ∘ [ out Y ∘ g , i₂ ∘ extend g ] ∘ out X ≈˘⟨ refl⟩∘⟨ (refl⟩∘⟨ identityˡ) ⟩
|
||||||
|
-- out⁻¹ Z ∘ [ out Z ∘ h , i₂ ∘ extend h ] ∘ idC ∘ [ out Y ∘ g , i₂ ∘ extend g ] ∘ out X ≈˘⟨ pullʳ (pullʳ (pullˡ (_≅_.isoʳ (out-≅ Y)))) ⟩
|
||||||
|
-- (out⁻¹ Z ∘ [ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y) ∘ out⁻¹ Y ∘ [ out Y ∘ g , i₂ ∘ extend g ] ∘ out X ≈˘⟨ (refl⟩∘⟨ extendlaw h) ⟩∘⟨ (refl⟩∘⟨ extendlaw g) ⟩
|
||||||
|
-- (out⁻¹ Z ∘ out Z ∘ extend h) ∘ (out⁻¹ Y ∘ out Y ∘ extend g) ≈˘⟨ ((insertˡ (_≅_.isoˡ (out-≅ Z)))) ⟩∘⟨ ((insertˡ (_≅_.isoˡ (out-≅ Y)))) ⟩
|
||||||
|
-- extend h ∘ extend g ∎
|
||||||
|
|
||||||
|
|
||||||
|
--begin
|
||||||
|
-- f (! (algebras Z) {A = alg (extend h ∘ g)}) ∘ i₁ {A = D₀ X} {B = D₀ Z} ≈⟨ (!-unique (algebras Z) (record { f = {! (f (! (algebras Z) {A = alg h}) ∘ i₁) ∘ f (! (algebras Y) {A = alg g}) !} ; commutes = {! !} })) ⟩∘⟨refl ⟩
|
||||||
|
-- {! !} ∘ i₁ ≈⟨ {! !} ⟩
|
||||||
|
-- (f (! (algebras Z) {A = alg h}) ∘ i₁) ∘ f (! (algebras Y) {A = alg g}) ∘ i₁ ∎
|
||||||
|
; sym-assoc = λ {X} {Y} {Z} {g} {h} → {! !}
|
||||||
; extend-≈ = λ {X} {Y} {f} {g} eq → begin
|
; extend-≈ = λ {X} {Y} {f} {g} eq → begin
|
||||||
F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (Terminal.!-unique (algebras Y) (record { f = (F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ; commutes = begin
|
F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (Terminal.!-unique (algebras Y) (record { f = (F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ; commutes = begin
|
||||||
F-Coalgebra.α (Terminal.⊤ (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
F-Coalgebra.α (Terminal.⊤ (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
||||||
|
@ -129,29 +216,47 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
extend g ∎
|
extend g ∎
|
||||||
})
|
})
|
||||||
where
|
where
|
||||||
|
open Terminal
|
||||||
alg' : ∀ {X Y} → F-Coalgebra (delayF Y)
|
alg' : ∀ {X Y} → F-Coalgebra (delayF Y)
|
||||||
alg' {X} {Y} = record { A = D₀ X ; α = i₂ }
|
alg' {X} {Y} = record { A = D₀ X ; α = i₂ }
|
||||||
module _ {X Y : Obj} (f : X ⇒ D₀ Y) where
|
module _ {X Y : Obj} (f : X ⇒ D₀ Y) where
|
||||||
open Terminal (algebras Y) using (!; ⊤-id)
|
-- open Terminal (algebras Y) using (!; ⊤-id)
|
||||||
alg : F-Coalgebra (delayF Y)
|
alg : F-Coalgebra (delayF Y)
|
||||||
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] } -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm)
|
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] } -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm)
|
||||||
extend : D₀ X ⇒ D₀ Y
|
extend : D₀ X ⇒ D₀ Y
|
||||||
extend = F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₁ {B = D₀ Y}
|
extend = F-Coalgebra-Morphism.f (! (algebras Y) {A = alg}) ∘ i₁ {B = D₀ Y}
|
||||||
!∘i₂ : F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₂ ≈ idC
|
!∘i₂ : F-Coalgebra-Morphism.f (! (algebras Y) {A = alg}) ∘ i₂ ≈ idC
|
||||||
!∘i₂ = ⊤-id (F-Coalgebras (delayF Y) [ ! ∘ record { f = i₂ ; commutes = inject₂ } ] )
|
!∘i₂ = ⊤-id (algebras Y) (F-Coalgebras (delayF Y) [ ! (algebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] )
|
||||||
extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X
|
extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X
|
||||||
extendlaw = begin
|
extendlaw = begin
|
||||||
out Y ∘ extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! {A = alg})) ⟩
|
out Y ∘ extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! (algebras Y) {A = alg})) ⟩
|
||||||
((idC +₁ (F-Coalgebra-Morphism.f !)) ∘ F-Coalgebra.α alg) ∘ coproduct.i₁ ≈⟨ pullʳ inject₁ ⟩
|
((idC +₁ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ F-Coalgebra.α alg) ∘ coproduct.i₁ ≈⟨ pullʳ inject₁ ⟩
|
||||||
(idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
|
(idC +₁ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
|
||||||
[ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
[ (idC +₁ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
||||||
, (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
|
, (idC +₁ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
|
||||||
[ [ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₁
|
[ [ (idC +₁ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ i₁
|
||||||
, (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
, (idC +₁ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
|
||||||
, (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl ⟩
|
, (i₂ ∘ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl ⟩
|
||||||
[ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₂ ] ∘ (out Y ∘ f)
|
[ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ i₂ ] ∘ (out Y ∘ f)
|
||||||
, (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩
|
, (i₂ ∘ (F-Coalgebra-Morphism.f (! (algebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩
|
||||||
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
|
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
|
||||||
|
extend-unique : (g : D₀ X ⇒ D₀ Y) → extend ≈ g
|
||||||
|
extend-unique g = {! !}
|
||||||
|
-- begin
|
||||||
|
-- F-Coalgebra-Morphism.f (! (algebras Y) {A = alg}) ∘ i₁ {B = D₀ Y} ≈⟨ (!-unique (algebras Y) (record { f = [ g , idC ] ; commutes = begin
|
||||||
|
-- out Y ∘ [ g , idC ] ≈⟨ ∘[] ⟩
|
||||||
|
-- [ out Y ∘ g , out Y ∘ idC ] ≈⟨ []-cong₂ {! !} identityʳ ⟩
|
||||||
|
-- {! !} ≈˘⟨ {! !} ⟩
|
||||||
|
-- [ ([ out Y , i₂ ] ∘ (f +₁ g)) ∘ out X , out Y ] ≈˘⟨ []-cong₂ (sym []∘+₁ ⟩∘⟨refl) refl ⟩
|
||||||
|
-- [ [ out Y ∘ f , i₂ ∘ g ] ∘ out X , out Y ] ≈˘⟨ {! !} ⟩
|
||||||
|
-- [ [ [ i₁ , i₂ ∘ idC ] ∘ (out Y ∘ f) , i₂ ∘ g ] ∘ out X , out Y ] ≈˘⟨ []-cong₂ (([]-cong₂ (([]-cong₂ identityʳ (pullʳ inject₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl) refl ⟩
|
||||||
|
-- [ [ [ i₁ ∘ idC , (i₂ ∘ [ g , idC ]) ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ g ] ∘ out X , out Y ] ≈˘⟨ []-cong₂ (([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) (pullʳ inject₁)) ⟩∘⟨refl) (elimˡ (Functor.identity (delayF Y))) ⟩
|
||||||
|
-- [ [ [ (idC +₁ [ g , idC ]) ∘ i₁ , (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f) , (i₂ ∘ [ g , idC ]) ∘ i₁ ] ∘ out X , (idC +₁ idC) ∘ out Y ] ≈˘⟨ []-cong₂ (([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl) ((+₁-cong₂ identity² inject₂) ⟩∘⟨refl) ⟩
|
||||||
|
-- [ [ (idC +₁ [ g , idC ]) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₁ ] ∘ out X , (idC ∘ idC +₁ [ g , idC ] ∘ i₂) ∘ out Y ] ≈˘⟨ []-cong₂ (pullˡ ∘[]) (pullˡ +₁∘+₁) ⟩
|
||||||
|
-- [ (idC +₁ [ g , idC ]) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ [ g , idC ]) ∘ (idC +₁ i₂) ∘ out Y ] ≈˘⟨ ∘[] ⟩
|
||||||
|
-- (idC +₁ [ g , idC ]) ∘ F-Coalgebra.α alg ∎ })) ⟩∘⟨refl ⟩
|
||||||
|
-- [ g , idC ] ∘ i₁ ≈⟨ inject₁ ⟩
|
||||||
|
-- g ∎
|
||||||
αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → F-Coalgebra.α (alg f) ≈ F-Coalgebra.α (alg g)
|
αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → F-Coalgebra.α (alg f) ≈ F-Coalgebra.α (alg g)
|
||||||
αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl
|
αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl
|
||||||
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (delayF Y)) (alg f) (alg g)
|
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (delayF Y)) (alg f) (alg g)
|
||||||
|
@ -173,56 +278,6 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
### Old definitions:
|
|
||||||
|
|
||||||
```agda
|
|
||||||
record DelayMonad : Set (o ⊔ ℓ ⊔ e) where
|
|
||||||
field
|
|
||||||
D₀ : Obj → Obj
|
|
||||||
|
|
||||||
field
|
|
||||||
now : ∀ {X} → X ⇒ D₀ X
|
|
||||||
later : ∀ {X} → D₀ X ⇒ D₀ X
|
|
||||||
isIso : ∀ {X} → IsIso ([ now {X} , later {X} ])
|
|
||||||
|
|
||||||
out : ∀ {X} → D₀ X ⇒ X + D₀ X
|
|
||||||
out {X} = IsIso.inv (isIso {X})
|
|
||||||
|
|
||||||
field
|
|
||||||
coit : ∀ {X Y} → Y ⇒ X + Y → Y ⇒ D₀ X
|
|
||||||
coit-law : ∀ {X Y} {f : Y ⇒ X + Y} → out ∘ (coit f) ≈ (idC +₁ (coit f)) ∘ f
|
|
||||||
|
|
||||||
field
|
|
||||||
_* : ∀ {X Y} → X ⇒ D₀ Y → D₀ X ⇒ D₀ Y
|
|
||||||
*-law : ∀ {X Y} {f : X ⇒ D₀ Y} → out ∘ (f *) ≈ [ out ∘ f , i₂ ∘ (f *) ] ∘ out
|
|
||||||
*-unique : ∀ {X Y} (f : X ⇒ D₀ Y) (h : D₀ X ⇒ D₀ Y) → h ≈ f *
|
|
||||||
*-resp-≈ : ∀ {X Y} {f h : X ⇒ D₀ Y} → f ≈ h → f * ≈ h *
|
|
||||||
|
|
||||||
unitLaw : ∀ {X} → out {X} ∘ now {X} ≈ i₁
|
|
||||||
unitLaw = begin
|
|
||||||
out ∘ now ≈⟨ refl⟩∘⟨ sym inject₁ ⟩
|
|
||||||
out ∘ [ now , later ] ∘ i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) ⟩
|
|
||||||
i₁ ∎
|
|
||||||
|
|
||||||
toMonad : KleisliTriple C
|
|
||||||
toMonad = record
|
|
||||||
{ F₀ = D₀
|
|
||||||
; unit = now
|
|
||||||
; extend = _*
|
|
||||||
; identityʳ = λ {X} {Y} {k} → begin
|
|
||||||
k * ∘ now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl ⟩
|
|
||||||
(([ now , later ] ∘ out) ∘ k *) ∘ now ≈⟨ pullʳ *-law ⟩∘⟨refl ⟩
|
|
||||||
([ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitLaw) ⟩
|
|
||||||
[ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
|
|
||||||
[ now , later ] ∘ out ∘ k ≈⟨ cancelˡ (IsIso.isoʳ isIso) ⟩
|
|
||||||
k ∎
|
|
||||||
; identityˡ = λ {X} → sym (*-unique now idC)
|
|
||||||
; assoc = λ {X} {Y} {Z} {f} {g} → sym (*-unique ((g *) ∘ f) ((g *) ∘ (f *)))
|
|
||||||
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
|
|
||||||
; extend-≈ = *-resp-≈
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
### Definition 30: Search-Algebras
|
### Definition 30: Search-Algebras
|
||||||
|
|
||||||
TODO
|
TODO
|
||||||
|
|
Loading…
Reference in a new issue