mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
move helper agda files
This commit is contained in:
parent
e4af840dc2
commit
ed594af9a5
2 changed files with 47 additions and 75 deletions
|
@ -1,75 +0,0 @@
|
|||
{-# OPTIONS --guardedness #-}
|
||||
|
||||
-- Take this example as motivation:
|
||||
-- https://stackoverflow.com/questions/21808186/agda-reading-a-line-of-standard-input-as-a-string-instead-of-a-costring
|
||||
|
||||
open import Level
|
||||
open import Agda.Builtin.Coinduction
|
||||
module thesis.motivation where
|
||||
|
||||
module old-delay where
|
||||
private
|
||||
variable
|
||||
a : Level
|
||||
data _⊥ (A : Set a) : Set a where
|
||||
now : A → A ⊥
|
||||
later : ∞ (A ⊥) → A ⊥
|
||||
|
||||
never : ∀ {A : Set a} → A ⊥
|
||||
never = later (♯ never)
|
||||
|
||||
module ReverseInput where
|
||||
open import Data.Char
|
||||
open import Data.Nat
|
||||
open import Data.List using (List; []; _∷_)
|
||||
open import Data.String
|
||||
open import Data.Unit.Polymorphic
|
||||
open import Codata.Musical.Costring
|
||||
open import Codata.Musical.Colist using ([]; _∷_)
|
||||
-- open import IO using (IO; seq; bind; return; Main; run; putStrLn)
|
||||
open import IO.Primitive
|
||||
open import IO.Primitive.Infinite using (getContents)
|
||||
open import Agda.Builtin.IO using ()
|
||||
|
||||
open old-delay
|
||||
-- IDEA: start in haskell, then motivate in agda and define delay type
|
||||
-- next talk about bisimilarity.
|
||||
-- idea for slide title: dlrowolleh.hs and dlrowolleh.agda
|
||||
|
||||
private
|
||||
variable
|
||||
a : Level
|
||||
|
||||
-- reverse : Costring → String ⊥
|
||||
-- reverse = go []
|
||||
-- where
|
||||
-- go : List Char → Costring → String ⊥
|
||||
-- go acc [] = now (fromList acc)
|
||||
-- go acc (x ∷ xs) = later (♯ go (x ∷ acc) (♭ xs))
|
||||
|
||||
-- putStrLn⊥ : String ⊥ → IO {a} ⊤
|
||||
-- putStrLn⊥ (now s) = putStrLn s
|
||||
-- putStrLn⊥ (later s) = seq (♯ return tt) (♯ putStrLn⊥ (♭ s))
|
||||
|
||||
-- main : Main
|
||||
-- main = run (bind (♯ {! getContents !}) {! !}) --(λ c → ♯ putStrLn⊥ (reverse c)))
|
||||
|
||||
-- NOTE: This is not very understandable... Better stick to the outdated syntax
|
||||
module delay where
|
||||
mutual
|
||||
data _⊥ (A : Set) : Set where
|
||||
now : A → A ⊥
|
||||
later : A ⊥' → A ⊥
|
||||
|
||||
record _⊥' (A : Set) : Set where
|
||||
coinductive
|
||||
field
|
||||
force : A ⊥
|
||||
open _⊥'
|
||||
|
||||
mutual
|
||||
never : ∀ {A : Set} → A ⊥
|
||||
never = later never'
|
||||
|
||||
never' : ∀ {A : Set} → A ⊥'
|
||||
force never' = never
|
47
thesis/agda/setoids.agda
Normal file
47
thesis/agda/setoids.agda
Normal file
|
@ -0,0 +1,47 @@
|
|||
module Foo where
|
||||
open import Level
|
||||
|
||||
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
|
||||
constructor _,_
|
||||
field
|
||||
fst : A
|
||||
snd : B
|
||||
open _×_
|
||||
|
||||
<_,_> : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
|
||||
→ (A → B) → (A → C) → A → (B × C)
|
||||
< f , g > x = (f x , g x)
|
||||
|
||||
record ⊤ {l} : Set l where
|
||||
constructor tt
|
||||
|
||||
! : ∀ {l} {X : Set l} → X → ⊤ {l}
|
||||
! _ = tt
|
||||
|
||||
data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
|
||||
i₁ : A → A + B
|
||||
i₂ : B → A + B
|
||||
|
||||
[_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
|
||||
→ (A → C) → (B → C) → (A + B) → C
|
||||
[ f , g ] (i₁ x) = f x
|
||||
[ f , g ] (i₂ x) = g x
|
||||
|
||||
data ⊥ {l} : Set l where
|
||||
|
||||
¡ : ∀ {l} {X : Set l} → ⊥ {l} → X
|
||||
¡ ()
|
||||
|
||||
distributeˡ⁻¹ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A × B) + (A × C) → A × (B + C)
|
||||
distributeˡ⁻¹ (i₁ (x , y)) = (x , i₁ y)
|
||||
distributeˡ⁻¹ (i₂ (x , y)) = (x , i₂ y)
|
||||
|
||||
distributeˡ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A × (B + C) → (A × B) + (A × C)
|
||||
distributeˡ (x , i₁ y) = i₁ (x , y)
|
||||
distributeˡ (x , i₂ y) = i₂ (x , y)
|
||||
|
||||
curry : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (C × A → B) → C → A → B
|
||||
curry f x y = f (x , y)
|
||||
|
||||
eval : ∀ {a b} {A : Set a} {B : Set b} → ((A → B) × A) → B
|
||||
eval (f , x) = f x
|
Loading…
Reference in a new issue