finished congruence proof

This commit is contained in:
Leon Vatthauer 2024-01-29 12:52:25 +01:00
parent 3b78e1b199
commit f0923f1007
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -9,12 +9,13 @@ open import Data.Sum.Relation.Binary.Pointwise
open import Function.Bundles using (_⟨$⟩_) renaming (Func to _⟶_)
open import Function.Construct.Identity renaming (function to idₛ)
open import Function.Construct.Setoid renaming (setoid to _⇨_; _∙_ to _∘_)
open import Function using (_∘_) renaming (_∘_ to _∘f_)
open import Function using (_∘_; id) renaming (_∘_ to _∘f_)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_) renaming (sym to ≣-sym; refl to ≣-refl; trans to ≣-trans)
open import FreeObject
open import Categories.FreeObjects.Free
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Product.Function.NonDependent.Setoid using (proj₁ₛ)
open import Categories.Category.Instance.Properties.Setoids.Choice using ()
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Data.Product
@ -154,11 +155,11 @@ module Monad.Instance.Setoids.K { : Level} where
delay-algebras : ∀ (A : Setoid ) → Elgot-Algebra
delay-algebras A = record { A = Delayₛ A ; algebra = delay-algebras-on {A}}
open Elgot-Algebra using (#-Fixpoint; #-Uniformity) renaming (A to ⟦_⟧)
open Elgot-Algebra using (#-Fixpoint; #-Uniformity; #-resp-≈; #-Diamond) renaming (A to ⟦_⟧)
delay-lift : ∀ {A : Setoid } {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
delay-lift {A} {B} f = record { h = delay-lift' ; preserves = λ {X} {g} {x} → ? }
delay-lift {A} {B} f = record { h = delay-lift' ; preserves = λ {X} {g} {x} → {! !} }
where
open Elgot-Algebra B using (_#)
-- (f + id) ∘ out
@ -195,8 +196,8 @@ module Monad.Instance.Setoids.K { : Level} where
z₁ = delta {A} ineq₁
z₂ = delta {A} ineq₂
helper#≈-cong' {z} = ≡-trans ⟦ B ⟧ (≡-sym ⟦ B ⟧ eq₁) eq₂
where
helper#≈-cong' {z} = ≡-trans ⟦ B ⟧ (≡-trans ⟦ B ⟧ (≡-sym ⟦ B ⟧ eq₁) (≡-sym ⟦ B ⟧ eq₀)) eq₂
where
outer : A ⟶ (A ×ₛ -setoid {})
outer = record { to = λ z → z , zero ; cong = λ {x} {y} x≡y → x≡y , ≣-refl }
@ -215,55 +216,75 @@ module Monad.Instance.Setoids.K { : Level} where
helper' : (Delayₛ (A ×ₛ -setoid)) ⟶ (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
helper' = record { to = helper₁' ; cong = helper₁-cong'}
-- an unfolding lemma for delay (on setoids)
helper₁'' : Delay ( A × {}) → ⟦ B ⟧ ⊎ Delay ( A × {})
helper₁'' (now (x , _)) = inj₁ (< f > x)
helper₁'' (later y) = inj₂ (force y)
out : ∀ {X} → Delay X → X ⊎ Delay X
out {X} (now x) = inj₁ x
out {X} (later x) = inj₂ x
helper₁-cong'' : {x y : Delay ( A × {})} → (xy : [ A ×ₛ -setoid ][ x y ]) → [ ⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid) ][ helper₁'' x ≡ helper₁'' y ]
helper₁-cong'' {now (x , _)} (now (x≡y , ≣-refl)) = inj₁ (cong f x≡y)
helper₁-cong'' (later xy) = inj₂ (force xy)
out⁻¹ : ∀ {X} → X ⊎ Delay X → Delay X
out⁻¹ {X} = [ now , later ]
helper'' : (Delayₛ (A ×ₛ -setoid)) ⟶ (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
helper'' = record { to = helper₁'' ; cong = helper₁-cong''}
out : ∀ {X} → (Delayₛ X) ⟶ (X ⊎ₛ (Delayₛ X))
out {X} = record { to = out { X } ; cong = out-cong }
-- Needs #-Diamond
eq₀ : ∀ {z} → [ ⟦ B ⟧ ][ helper' # ⟨$⟩ z ≡ helper'' # ⟨$⟩ z ]
eq₀ {z} = ≡-trans ⟦ B ⟧
(#-resp-≈ B {Delayₛ (A ×ₛ -setoid)} {helper'} step₁)
(≡-trans ⟦ B ⟧
(#-Diamond B {Delayₛ (A ×ₛ -setoid)} helper''')
(#-resp-≈ B (λ {x} → (≡-trans (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid)) (stepid {x}) (step₂ {x})))))
where
out-cong : ∀ {x y} → [ X ][ x y ] → [ X ⊎ₛ (Delayₛ X) ][ out x ≡ out y ]
out-cong {.(now _)} {.(now _)} (now x≡y) = inj₁ x≡y
out-cong {.(later _)} {.(later _)} (later xy) = inj₂ (record { force = force xy })
helper₁''' : Delay ( A × {}) → ⟦ B ⟧ ⊎ (Delay ( A × {}) ⊎ Delay ( A × {}))
helper₁''' (now (x , zero)) = inj₁ (< f > x)
helper₁''' (now (x , suc n)) = inj₂ (inj₁ (< liftFₛ outer > (ι {A} (x , n))))
helper₁''' (later y) = inj₂ (inj₂ (force y))
-- TODO move
nowₛ : ∀ {X} → X ⟶ Delayₛ X
nowₛ {X} = record { to = now ; cong = {! !} }
laterₛ : ∀ {X} → Delayₛ X ⟶ Delayₛ X
laterₛ {X} = record { to = later ; cong = {! !} }
helper₁-cong''' : {x y : Delay ( A × {})} → (xy : [ A ×ₛ -setoid ][ x y ]) → [ ⟦ B ⟧ ⊎ₛ (Delayₛ (A ×ₛ -setoid) ⊎ₛ Delayₛ (A ×ₛ -setoid)) ][ helper₁''' x ≡ helper₁''' y ]
helper₁-cong''' {now (x , zero)} (now (x≡y , ≣-refl)) = inj₁ (cong f x≡y)
helper₁-cong''' {now (x , suc n)} {now (y , suc _)} (now (x≡y , ≣-refl)) = inj₂ (inj₁ (cong (liftFₛ outer) (cong ιₛ' (x≡y , ≣-refl))))
helper₁-cong''' (later xy) = inj₂ (inj₂ (force xy))
helper''' : (Delayₛ (A ×ₛ -setoid)) ⟶ (⟦ B ⟧ ⊎ₛ (Delayₛ (A ×ₛ -setoid) ⊎ₛ Delayₛ (A ×ₛ -setoid)))
helper''' = record { to = helper₁''' ; cong = helper₁-cong''' }
out⁻¹ : ∀ {X} → (X ⊎ₛ Delayₛ X) ⟶ (Delayₛ X)
out⁻¹ {X} = [ nowₛ , laterₛ ]ₛ
step₁ : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid) ][ helper' ⟨$⟩ x ≡ ([ inj₁ , inj₂ ∘′ [ id , id ] ] ∘′ helper₁''') x ]
step₁ {now (a , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
step₁ {now (a , suc n)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
step₁ {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
-- TODO out∘out⁻¹≡id and out⁻¹∘out≡id
step₂ : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid) ][ ([ inj₁ , [ inj₁ ∘′ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delayₛ (A ×ₛ -setoid)) , idₛ (Delayₛ (A ×ₛ -setoid)) ]ₛ ]ₛ ∘ helper''') # > , inj₂ ] ] ∘′ helper₁''') x ≡ helper'' ⟨$⟩ x ]
step₂ {now (a , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
step₂ {now (x , suc n)} = inj₁ (by-induction n)
where
by-induction : ∀ n → [ ⟦ B ⟧ ][ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delayₛ (A ×ₛ -setoid)) , idₛ (Delayₛ (A ×ₛ -setoid)) ]ₛ ]ₛ ∘ helper''') # > (< liftFₛ outer > (ι (x , n))) ≡ f ⟨$⟩ x ]
by-induction zero = #-Fixpoint B
by-induction (suc n) = ≡-trans ⟦ B ⟧ (#-Fixpoint B) (by-induction n)
step₂ {later y} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
-- Should follow by compositionality + fixpoint
eq₁ : ∀ {z} → [ ⟦ B ⟧ ][ helper' # ⟨$⟩ z ≡ helper # ⟨$⟩ liftF proj₁ z ]
eq₁ {z} = {! !}
-- this step should not be needed, the problem is the hole in its type, if we try to write down the type that should go into the hole, agda will reject it above.
stepid : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid) ][ ([ inj₁ , [ inj₁ ∘′ _ , inj₂ ] ] ∘′ helper₁''') x ≡ ([ inj₁ , [ inj₁ ∘′ < ([ inj₁ₛ , inj₂ₛ ∘ [ idₛ (Delayₛ (A ×ₛ -setoid)) , idₛ (Delayₛ (A ×ₛ -setoid)) ]ₛ ]ₛ ∘ helper''') # > , inj₂ ] ] ∘′ helper₁''') x ]
stepid {now (x , zero)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
stepid {now (x , suc n)} = inj₁ (#-resp-≈ B (≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))))
stepid {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ (A ×ₛ -setoid))
eq₁ : ∀ {z} → [ ⟦ B ⟧ ][ helper'' # ⟨$⟩ z ≡ helper # ⟨$⟩ liftF proj₁ z ]
eq₁ {z} = #-Uniformity B {f = helper''} {g = helper} {h = liftFₛ proj₁ₛ} by-uni
where
step₁ : [ ⟦ B ⟧ ][ helper' # ⟨$⟩ z ≡ (< ([ inj₁ₛ , inj₂ₛ ∘ out ]ₛ ∘ helper' ∘ out⁻¹) # > ∘′ out) z ]
step₁ = {! !} -- should follow by uniformity
step₂ : ∀ {x} → [ ⟦ B ⟧ ][ (< ([ inj₁ₛ , inj₂ₛ ∘ out ]ₛ ∘ helper' ∘ out⁻¹) # > ∘′ out) x ≡ helper # ⟨$⟩ liftF proj₁ x ]
step₂ {now x} = {! !}
step₂ {later x} = {! !} -- ?
by-uni : ∀ {x} → [ ⟦ B ⟧ ⊎ₛ Delayₛ A ][ [ inj₁ , inj₂ ∘′ (liftF proj₁) ] (helper₁'' x) ≡ (< helper > ∘′ liftF proj₁) x ]
by-uni {now (a , b)} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ A)
by-uni {later x} = ≡-refl (⟦ B ⟧ ⊎ₛ Delayₛ A)
eq : ∀ {x y} → [ A ×ₛ -setoid ][ x y ] → [ ⟦ B ⟧ ⊎ₛ Delayₛ A ][ [ inj₁ , inj₂ ∘′ μ ∘′ (liftF ι) ] (helper₁' x) ≡ (helper₁ ∘′ μ ∘′ (liftF ι)) y ]
eq {now (x , n)} {now (y , .n)} (now (xy , ≣-refl)) = eq'
eq {now (x , n)} {now (y , .n)} (now (xy , ≣-refl)) = eq' {n}
where
eq' : ∀ {n} → [ ⟦ B ⟧ ⊎ₛ Delayₛ A ][ [ inj₁ , inj₂ ∘′ μ ∘′ liftF ι ] (helper₁' (now (x , n))) ≡ (helper₁ ∘′ μ {A} ∘′ liftF ι) (now (y , n)) ]
eq' {zero} = inj₁ (cong f xy)
eq' {suc n} = inj₂ (-trans A (cong (μₛ∼ A) (-sym (Delayₛ A) (lift-comp {f = outer} {g = ιₛ'} {ι (x , n)} (-refl A)))) (-trans A identityˡ (cong ιₛ' (xy , ≣-refl)))) -- (identityˡ (cong ιₛ' (xy , ≣-refl))))
eq (later xy) = inj₂ (cong (μₛ∼ A) (cong (liftFₛ ιₛ') (force xy)))
-- Should follow by uniformity
eq₂ : [ ⟦ B ⟧ ][ helper' # ⟨$⟩ z ≡ helper # ⟨$⟩ μ {A} (liftF (ι {A}) z)]
eq₂ = Elgot-Algebra.#-Uniformity B {Delayₛ (A ×ₛ -setoid {})} {Delayₛ A} {helper'} {helper} {μₛ∼ A ∘ liftFₛ ιₛ'} {! !} -- eq (-refl (A ×ₛ -setoid))
eq₂ = Elgot-Algebra.#-Uniformity B {Delayₛ (A ×ₛ -setoid {})} {Delayₛ A} {helper'} {helper} {μₛ∼ A ∘ liftFₛ ιₛ'} (λ {x} → eq {x} {x} (-refl (A ×ₛ -setoid)))
delay-lift' = record { to = < helper # > ; cong = helper#≈-cong }