This commit is contained in:
Leon Vatthauer 2024-01-03 14:41:35 +01:00
parent 4d24b1d0e5
commit fd7b498554
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 40 additions and 11 deletions

View file

@ -65,6 +65,9 @@ module Monad.Instance.K.Instance.Delay {c } where
open StrongBisimilarity renaming (__ to [_][__]) open StrongBisimilarity renaming (__ to [_][__])
_⊥ₛ' : Setoid c (c ⊔ ) → Setoid c (c ⊔ )
_⊥ₛ' A = record { Carrier = A ⊥ ; _≈_ = [_][__] A ; isEquivalence = record { refl = -refl A ; sym = -sym A ; trans = -trans A } }
module WeakBisimilarity (A : Setoid c (c ⊔ )) where module WeakBisimilarity (A : Setoid c (c ⊔ )) where
data _↓_ : A ⊥ → A → Set (c ⊔ ) where data _↓_ : A ⊥ → A → Set (c ⊔ ) where
now↓ : ∀ {x y} (x≡y : [ A ][ x ≡ y ]) → now x ↓ y now↓ : ∀ {x y} (x≡y : [ A ][ x ≡ y ]) → now x ↓ y
@ -251,4 +254,21 @@ module Monad.Instance.K.Instance.Delay {c } where
; identityˡ = identityˡ ; identityˡ = identityˡ
; identityʳ = identityʳ ; identityʳ = identityʳ
} }
strongMonad : Monad (Setoids c (c ⊔ ))
strongMonad = record
{ F = record
{ F₀ = _⊥ₛ'
; F₁ = λ {A} {B} f → record { _⟨$⟩_ = liftF (f ._⟨$⟩_) ; cong = {! !} }
; identity = {! !}
; homomorphism = {! !}
; F-resp-≈ = {! !}
}
; η = {! !}
; μ = {! !}
; assoc = {! !}
; sym-assoc = {! !}
; identityˡ = {! !}
; identityʳ = {! !}
}
``` ```

View file

@ -10,7 +10,7 @@ open import Function.Equality as SΠ renaming (id to idₛ)
open import Codata.Musical.Notation open import Codata.Musical.Notation
open import Function using (_∘_) renaming (_∘_ to _∘f_) open import Function using (_∘_) renaming (_∘_ to _∘f_)
import Relation.Binary.PropositionalEquality as Eq import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_) renaming (sym to ≣-sym) open Eq using (_≡_) renaming (sym to ≣-sym; refl to ≣-refl; trans to ≣-trans)
open import FreeObject open import FreeObject
open import Categories.FreeObjects.Free open import Categories.FreeObjects.Free
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
@ -75,6 +75,13 @@ module Monad.Instance.Setoids.K { : Level} where
... | inj₂ a | inj₁ b = absurd-helper f (≡-sym X x≡y) eqy eqx ... | inj₂ a | inj₁ b = absurd-helper f (≡-sym X x≡y) eqy eqx
... | inj₂ a | inj₂ b = ≈-sym A (later-eq (later≈ (♯ iter-cong f (≡-sym X (inj₂-helper f x≡y eqx eqy))))) ... | inj₂ a | inj₂ b = ≈-sym A (later-eq (later≈ (♯ iter-cong f (≡-sym X (inj₂-helper f x≡y eqx eqy)))))
iter-fixpoint' : ∀ {A X : Setoid } {f : X ⟶ (A ⊥ₛ' ⊎ₛ X)} {x y : X } → [ X ][ x ≡ y ] → [ A ][ iter {A} {X} (f ._⟨$⟩_) x [ Function.id , iter {A} {X} (f ._⟨$⟩_) ] ((f ._⟨$⟩_) y) ]
iter-fixpoint' {A} {X} {f} {x} {y} x≡y with (f ._⟨$⟩_) x in eqx | (f ._⟨$⟩_) y in eqy
... | inj₁ a | inj₁ b = inj₁-helper f x≡y eqx eqy
... | inj₁ a | inj₂ b = absurd-helper f x≡y eqx eqy
... | inj₂ a | inj₁ b = absurd-helper f (≡-sym X x≡y) eqy eqx
... | inj₂ a | inj₂ b = -sym A {! !} -- ≈-sym A (later-eq (later≈ (♯ iter-cong f (≡-sym X (inj₂-helper f x≡y eqx eqy)))))
iterₛ : ∀ {A X : Setoid } → (X ⟶ (A ⊥ₛ ⊎ₛ X)) → X ⟶ A ⊥ₛ iterₛ : ∀ {A X : Setoid } → (X ⟶ (A ⊥ₛ ⊎ₛ X)) → X ⟶ A ⊥ₛ
iterₛ {A} {X} f = record { _⟨$⟩_ = iter {A} {X} (f ._⟨$⟩_) ; cong = iter-cong {A} {X} f } iterₛ {A} {X} f = record { _⟨$⟩_ = iter {A} {X} (f ._⟨$⟩_) ; cong = iter-cong {A} {X} f }
@ -216,21 +223,23 @@ module Monad.Instance.Setoids.K { : Level} where
out-cong {later x} {now y} x≡y = {! !} out-cong {later x} {now y} x≡y = {! !}
out-cong {later x} {later y} x≡y = {! !} out-cong {later x} {later y} x≡y = {! !}
set-setoid : ∀ {c} → Set c → Setoid c c
set-setoid A = record { Carrier = A ; _≈_ = _≡_ ; isEquivalence = record { refl = ≣-refl ; sym = ≣-sym ; trans = ≣-trans } }
delay-lift : ∀ {A : Setoid } {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B delay-lift : ∀ {A : Setoid } {B : Elgot-Algebra} → A ⟶ ⟦ B ⟧ → Elgot-Algebra-Morphism (delay-algebras A) B
delay-lift {A} {B} f = record { h = (B Elgot-Algebra.#) helper ; preserves = {! !} } delay-lift {A} {B} f = record { h = record { _⟨$⟩_ = ((B Elgot-Algebra.#) helper) ._⟨$⟩_ ; cong = λ {x} {y} x≈y → ? } ; preserves = {! !} }
where where
-- this definition of helper₁ corresponds to `(f + id) ∘ out`, but using the representation of _⊥ as a positive coinductive type -- (f + id) ∘ out, this is just on sets
helper₁ : A ⊥ → ⟦ B ⟧ A helper₁ : A ⊥ → ⟦ B ⟧ A
helper₁ (now x) = inj₁ (< f > x) helper₁ (now x) = inj₁ (< f > x)
helper₁ (later x) = inj₂ (♭ x) helper₁ (later x) = inj₂ (♭ x)
helper₁-cong : ∀ {x y : A ⊥} → [ A ][ x ≈ y ] → [ ⟦ B ⟧ ⊎ₛ A ⊥ₛ ][ helper₁ x ≡ helper₁ y ] -- setoid-morphism that preserves strong-bisimilarity
helper₁-cong {now x} {now y} x≈y = {! !} -- yes helper : A ⊥ₛ' ⟶ ⟦ B ⟧ ⊎ₛ A ⊥ₛ'
helper₁-cong {now x} {later y} x≈y = {! !} -- problematic, need to show inj₁ (f x) ≈ inj₂ y, which is contradictory, while the assumption now x ≈ later y is not contradictory. helper = record { _⟨$⟩_ = helper₁ ; cong = {! !} }
helper₁-cong {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = {! !} -- helper' :
helper₁-cong {later x} {later y} (later≈ x≈y) = {! !} -- cong inj₂ₛ (♭ x≈y) -- is-cong :
helper₁-cong {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = {! !} --cong inj₂ₛ (↓≈ a≡b x↓a y↓b)
helper : A ⊥ₛ ⟶ ⟦ B ⟧ ⊎ₛ A ⊥ₛ
helper = record { _⟨$⟩_ = helper₁ ; cong = helper₁-cong }
freeAlgebra : ∀ (A : Setoid ) → FreeObject elgotForgetfulF A freeAlgebra : ∀ (A : Setoid ) → FreeObject elgotForgetfulF A
freeAlgebra A = record freeAlgebra A = record