Compare commits

..

No commits in common. "1f4e5460d7adb961460cde3d5f7734aec97f0a9b" and "55dcf598fc9100a13e6811ce8df39bb3569ee41b" have entirely different histories.

6 changed files with 131 additions and 168 deletions

View file

@ -17,7 +17,7 @@ open import Categories.Category.Core
```agda
module Category.Construction.PreElgotMonads {o e} (ambient : Ambient o e) where
open Ambient ambient
open import Monad.PreElgot ambient
open import Monad.ElgotMonad ambient
open import Algebra.ElgotAlgebra ambient
open HomReasoning
open Equiv

View file

@ -1,5 +1,7 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Category.Instance.AmbientCategory using (Ambient)
open import Categories.Monad.Construction.Kleisli
@ -9,16 +11,54 @@ open import Categories.Functor
```
-->
## Summary
This file introduces Elgot Monads.
TODO: Probably only Pre-Elgot is needed
- [X] *Definition 13* Pre-Elgot Monads
- [ ] *Definition 13* strong pre-Elgot
- [X] *Definition 14* Elgot Monads
- [ ] *Definition 14* strong Elgot
- [ ] *Proposition 15* (Strong) Elgot monads are (strong) pre-Elgot
## Code
```agda
module Misc.Monad.Elgot {o e} (ambient : Ambient o e) where
module Monad.ElgotMonad {o e} (ambient : Ambient o e) where
open Ambient ambient
open HomReasoning
open MR C
open Equiv
open import Algebra.ElgotAlgebra ambient
open import Monad.PreElgot ambient
```
### *Definition 13*: Pre-Elgot Monads
```agda
record IsPreElgot (T : Monad C) : Set (o ⊔ ⊔ e) where
open Monad T
open RMonad (Monad⇒Kleisli C T) using (extend)
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- every TX needs to be equipped with an elgot algebra structure
field
elgotalgebras : ∀ {X} → Elgot-Algebra-on (T₀ X)
module elgotalgebras {X} = Elgot-Algebra-on (elgotalgebras {X})
-- with the following associativity
field
pres : ∀ {X Y Z} (f : Z ⇒ T₀ X + Z) (h : X ⇒ T₀ Y)
→ elgotalgebras._# ((extend h +₁ idC) ∘ f) ≈ extend h ∘ (elgotalgebras._# {X}) f
record PreElgotMonad : Set (o ⊔ ⊔ e) where
field
T : Monad C
isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public
```
### *Definition 14*: Elgot Monads
```agda
@ -50,7 +90,7 @@ module Misc.Monad.Elgot {o e} (ambient : Ambient o e) where
open IsElgot isElgot public
```
### *Proposition 15*: Elgot monads are pre-Elgot
### *Proposition 15*: (Strong) Elgot monads are (strong) pre-Elgot
-- elgot monads are pre-elgot
Elgot⇒PreElgot : ElgotMonad → PreElgotMonad
@ -107,4 +147,4 @@ module Misc.Monad.Elgot {o e} (ambient : Ambient o e) where
open ElgotMonad EM
module T = Monad T
open T using (F; η; μ)
open Functor F renaming (F₀ to T₀; F₁ to T₁)
open Functor F renaming (F₀ to T₀; F₁ to T₁)

View file

@ -22,7 +22,7 @@ open import Category.Construction.UniformIterationAlgebras ambient
open import Algebra.UniformIterationAlgebra ambient
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
open import Algebra.ElgotAlgebra ambient
open import Monad.Instance.K.Elgot ambient MK
open import Monad.Instance.K.Compositionality ambient MK
open Equiv
open HomReasoning

View file

@ -1,3 +1,5 @@
# TODO: every KX satisfies compositionality
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
@ -6,10 +8,8 @@ open import Category.Instance.AmbientCategory
import Monad.Instance.K as MIK
```
# Every KX is a free Elgot algebra
```agda
module Monad.Instance.K.Elgot {o e} (ambient : Ambient o e) (MK : MIK.MonadK ambient) where
module Monad.Instance.K.Compositionality {o e} (ambient : Ambient o e) (MK : MIK.MonadK ambient) where
open Ambient ambient
open MIK ambient
open MonadK MK

View file

@ -20,9 +20,9 @@ open MIK ambient
open MonadK MK
open import Algebra.ElgotAlgebra ambient
open import Algebra.UniformIterationAlgebra ambient
open import Monad.PreElgot ambient
open import Monad.ElgotMonad ambient
open import Monad.Instance.K ambient
open import Monad.Instance.K.Elgot ambient MK
open import Monad.Instance.K.Compositionality ambient MK
open import Monad.Instance.K.Commutative ambient MK
open import Monad.Instance.K.Strong ambient MK
open import Category.Construction.PreElgotMonads ambient
@ -37,22 +37,22 @@ open M C
# K is a pre-Elgot monad
```agda
-- TODO fix global declarations on Commutative.lagda.md
-- open Elgot-Algebra-on using (#-Compositionality)
-- TODO fix this import mess!!!
-- _# = λ {A} {X} f → Uniform-Iteration-Algebra._# (algebras A) {X = X} f
isPreElgot : IsPreElgot monadK
isPreElgot = record
{ elgotalgebras = λ {X} → elgot X
; extend-preserves = λ f h → sym (extend-preserve h f)
; pres = λ f h → sym (extend-preserve h f)
}
where open kleisliK using (extend)
preElgot : PreElgotMonad
preElgot = record { T = monadK ; isPreElgot = isPreElgot }
strongPreElgot : IsStrongPreElgot KStrong
strongPreElgot = record
{ preElgot = isPreElgot
; strengthen-preserves = τ-comm
}
-- initialPreElgot :
initialPreElgot : IsInitial PreElgotMonads preElgot
initialPreElgot = record
{ ! = !
@ -67,112 +67,108 @@ initialPreElgot = record
})
; α-η = FreeObject.*-lift (freealgebras _) (T.η.η _)
; α-μ = α
; preserves = λ {X} {B} f → Elgot-Algebra-Morphism.preserves (((freeElgot B) FreeObject.*) {A = record { A = T.F.F₀ B ; algebra = PreElgotMonad.elgotalgebras A }} (T.η.η B))
; preserves = λ {X} {B} f → Elgot-Algebra-Morphism.preserves (((freeElgot B) FreeObject.*) (T.η.η B))
}
where
open PreElgotMonad A using (T)
open RMonad (Monad⇒Kleisli C T) using (extend)
module T = Monad T
open PreElgotMonad preElgot using ()
open monadK using () renaming (η to ηK; μ to μK)
open Elgot-Algebra-on using (#-resp-≈)
T-Alg : ∀ (X : Obj) → Elgot-Algebra
T-Alg X = record { A = T.F.₀ X ; algebra = PreElgotMonad.elgotalgebras A }
K-Alg : ∀ (X : Obj) → Elgot-Algebra
K-Alg X = record { A = K.₀ X ; algebra = elgot X }
η' : ∀ (X : Obj) → K.₀ X ⇒ T.F.₀ X
η' X = Elgot-Algebra-Morphism.h (_* {A = T-Alg X} (T.η.η X))
η' X = Elgot-Algebra-Morphism.h (_* {A = record { A = T.F.F₀ X ; algebra = PreElgotMonad.elgotalgebras A }} (T.η.η X))
where open FreeObject (freeElgot X)
_#K = λ {B} {C} f → Elgot-Algebra._# (FreeObject.FX (freeElgot C)) {B} f
_#T = λ {B} {C} f → PreElgotMonad.elgotalgebras._# A {B} {C} f
-- some preservation facts that follow immediately, since these things are elgot-algebra-morphisms.
K₁-preserves : ∀ {X Y Z : Obj} (f : X ⇒ Y) (g : Z ⇒ K.₀ X + Z) → K.₁ f ∘ (g #K) ≈ ((K.₁ f +₁ idC) ∘ g) #K
K₁-preserves {X} {Y} {Z} f g = Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) {A = K-Alg Y} (ηK.η _ ∘ f))
μK-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ (K.₀ X) + Y) → μK.η X ∘ g #K ≈ ((μK.η X +₁ idC) ∘ g) #K
μK-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freeElgot (K.₀ X)) FreeObject.*) {A = K-Alg X} idC)
η'-preserves : ∀ {X Y : Obj} (g : Y ⇒ K.₀ X + Y) → η' X ∘ g #K ≈ ((η' X +₁ idC) ∘ g) #T
η'-preserves {X} g = Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) {A = T-Alg X} (T.η.η X))
commute : ∀ {X Y : Obj} (f : X ⇒ Y) → η' Y ∘ K.₁ f ≈ T.F.₁ f ∘ η' X
commute {X} {Y} f = begin
η' Y ∘ K.₁ f ≈⟨ FreeObject.*-uniq
(freeElgot X)
{A = T-Alg Y}
(T.F.₁ f ∘ T.η.η X)
(record { h = η' Y ∘ K.₁ f ; preserves = pres₁ })
comm₁ ⟩
Elgot-Algebra-Morphism.h (FreeObject._* (freeElgot X) {A = T-Alg Y} (T.F.₁ f ∘ T.η.η _)) ≈⟨ sym (FreeObject.*-uniq
(freeElgot X)
{A = T-Alg Y}
(T.F.₁ f ∘ T.η.η X)
(record { h = T.F.₁ f ∘ η' X ; preserves = pres₂ })
(pullʳ (FreeObject.*-lift (freealgebras X) (T.η.η X)))) ⟩
T.F.₁ f ∘ η' X ∎
η' Y ∘ K.₁ f ≈⟨ *-uniq (T.F.₁ f ∘ T.η.η X) (record { h = η' Y ∘ K.₁ f ; preserves = pres₁ }) (begin
(η' Y ∘ K.₁ f) ∘ η ≈⟨ pullʳ (K₁η f) ⟩
η' Y ∘ ηK.η _ ∘ f ≈⟨ pullˡ (FreeObject.*-lift (freealgebras Y) (T.η.η Y)) ⟩
T.η.η Y ∘ f ≈⟨ NaturalTransformation.commute T.η f ⟩
T.F.₁ f ∘ T.η.η X ∎) ⟩
Elgot-Algebra-Morphism.h (_* {A = record { A = T.F.F₀ Y ; algebra = PreElgotMonad.elgotalgebras A }} (T.F.₁ f ∘ T.η.η _)) ≈⟨ sym (*-uniq (T.F.₁ f ∘ T.η.η X) (record { h = T.F.₁ f ∘ η' X ; preserves = pres₂ }) (begin
(T.F.₁ f ∘ η' X) ∘ η ≈⟨ pullʳ (FreeObject.*-lift (freealgebras X) (T.η.η X)) ⟩
T.F.₁ f ∘ T.η.η X ∎)) ⟩
T.F.₁ f ∘ η' X ∎
where
open FreeObject (freeElgot X)
_#K = λ {B} {C} f → Elgot-Algebra._# (FreeObject.FX (freeElgot C)) {B} f
_#T = λ {B} {C} f → PreElgotMonad.elgotalgebras._# A {B} {C} f
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (η' Y ∘ K.₁ f) ∘ g #K ≈ ((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T
pres₁ {Z} {g} = begin
(η' Y ∘ K.₁ f) ∘ (g #K) ≈⟨ pullʳ (K₁-preserves f g) ⟩
η' Y ∘ (((K.₁ f +₁ idC) ∘ g) #K) ≈⟨ η'-preserves ((K.₁ f +₁ idC) ∘ g) ⟩
(η' Y ∘ K.₁ f) ∘ (g #K) ≈⟨ pullʳ (Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) (ηK.η Y ∘ f))) ⟩
η' Y ∘ (((K.₁ f +₁ idC) ∘ g) #K) ≈⟨ Elgot-Algebra-Morphism.preserves (((freeElgot Y) FreeObject.*) {A = record
{ A = T.F.F₀ Y
; algebra =
record
{ _# = λ {X = X₁} → A PreElgotMonad.elgotalgebras.#
; #-Fixpoint = PreElgotMonad.elgotalgebras.#-Fixpoint A
; #-Uniformity = PreElgotMonad.elgotalgebras.#-Uniformity A
; #-Folding = PreElgotMonad.elgotalgebras.#-Folding A
; #-resp-≈ = PreElgotMonad.elgotalgebras.#-resp-≈ A
}
}} (T.η.η Y)) ⟩
(((η' Y +₁ idC) ∘ (K.₁ f +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T
((η' Y ∘ K.₁ f +₁ idC) ∘ g) #T
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ X + Z} → (T.F.₁ f ∘ η' X) ∘ g #K ≈ ((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T
pres₂ {Z} {g} = begin
(T.F.₁ f ∘ η' X) ∘ g #K ≈⟨ pullʳ (η'-preserves g) ⟩
T.F.₁ f ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ (sym (F₁⇒extend T f)) ⟩∘⟨refl ⟩
extend (T.η.η Y ∘ f) ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ sym (PreElgotMonad.extend-preserves A ((η' X +₁ idC) ∘ g) (T.η.η Y ∘ f)) ⟩
(T.F.₁ f ∘ η' X) ∘ g #K ≈⟨ pullʳ (Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) (T.η.η X))) ⟩
T.F.₁ f ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ (sym (F₁⇒extend T f)) ⟩∘⟨refl ⟩
extend (T.η.η Y ∘ f) ∘ ((η' X +₁ idC) ∘ g) #T ≈⟨ sym (PreElgotMonad.pres A ((η' X +₁ idC) ∘ g) (T.η.η Y ∘ f)) ⟩
(((extend (T.η.η Y ∘ f) +₁ idC) ∘ (η' X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((F₁⇒extend T f) ⟩∘⟨refl) identity²)) ⟩
((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T
comm₁ : (η' Y ∘ K.₁ f) ∘ _ ≈ T.F.₁ f ∘ T.η.η X
comm₁ = begin
(η' Y ∘ K.₁ f) ∘ _ ≈⟨ pullʳ (K₁η f) ⟩
η' Y ∘ ηK.η _ ∘ f ≈⟨ pullˡ (FreeObject.*-lift (freealgebras Y) (T.η.η Y)) ⟩
T.η.η Y ∘ f ≈⟨ NaturalTransformation.commute T.η f ⟩
T.F.₁ f ∘ T.η.η X ∎
((T.F.₁ f ∘ η' X +₁ idC) ∘ g) #T
α-μ : ∀ {X : Obj} → η' X ∘ μK.η X ≈ T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)
α-μ {X} = begin
η' X ∘ μK.η X ≈⟨ FreeObject.*-uniq
(freeElgot (K.₀ X))
{A = T-Alg X}
(η' X)
(record { h = η' X ∘ μK.η X ; preserves = pres₁ })
(cancelʳ monadK.identityʳ) ⟩
Elgot-Algebra-Morphism.h (((freeElgot (K.₀ X)) FreeObject.*) {A = T-Alg X} (η' X)) ≈⟨ sym (FreeObject.*-uniq
(freeElgot (K.₀ X))
{A = T-Alg X}
(η' X)
(record { h = T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ; preserves = pres₂ })
comm) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ∎
η' X ∘ μK.η X ≈⟨ FreeObject.*-uniq (freeElgot (K.₀ X)) (η' X) (record { h = η' X ∘ μK.η X ; preserves = pres₁ }) (cancelʳ monadK.identityʳ) ⟩
Elgot-Algebra-Morphism.h (((freeElgot (K.₀ X)) FreeObject.*) {A = record
{ A = T.F.F₀ X
; algebra =
record
{ _# = λ Z → (A PreElgotMonad.elgotalgebras.#) Z
; #-Fixpoint = PreElgotMonad.elgotalgebras.#-Fixpoint A
; #-Uniformity = PreElgotMonad.elgotalgebras.#-Uniformity A
; #-Folding = PreElgotMonad.elgotalgebras.#-Folding A
; #-resp-≈ = PreElgotMonad.elgotalgebras.#-resp-≈ A
}
}} (η' X)) ≈⟨ sym (FreeObject.*-uniq (freeElgot (K.₀ X)) (η' X) (record { h = T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ; preserves = pres₂ }) (begin
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈⟨ (refl⟩∘⟨ sym (commute (η' X))) ⟩∘⟨refl ⟩
(T.μ.η X ∘ η' _ ∘ K.₁ (η' X)) ∘ ηK.η (K.₀ X) ≈⟨ assoc ○ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ sym (monadK.η.commute (η' X))) ⟩
T.μ.η X ∘ η' _ ∘ ηK.η (T.F.F₀ X) ∘ η' X ≈⟨ refl⟩∘⟨ (pullˡ (FreeObject.*-lift (freealgebras _) (T.η.η _))) ⟩
T.μ.η X ∘ T.η.η _ ∘ η' X ≈⟨ cancelˡ (Monad.identityʳ T) ⟩
η' X ∎)) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) ∎
where
_#K = λ {B} {C} f → Elgot-Algebra._# (FreeObject.FX (freeElgot C)) {B} f
_#T = λ {B} {C} f → PreElgotMonad.elgotalgebras._# A {B} {C} f
pres₁ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (η' X ∘ μK.η X) ∘ g #K ≈ ((η' X ∘ μK.η X +₁ idC) ∘ g) #T
pres₁ {Z} {g} = begin
(η' X ∘ μK.η X) ∘ (g #K) ≈⟨ pullʳ (μK-preserves g) ⟩
η' X ∘ ((μK.η X +₁ idC) ∘ g) #K ≈⟨ η'-preserves ((μK.η X +₁ idC) ∘ g) ⟩
(η' X ∘ μK.η X) ∘ (g #K) ≈⟨ pullʳ (Elgot-Algebra-Morphism.preserves (((freeElgot (K.₀ X)) FreeObject.*) idC)) ⟩
η' X ∘ ((μK.η X +₁ idC) ∘ g) #K ≈⟨ Elgot-Algebra-Morphism.preserves (((freeElgot X) FreeObject.*) (T.η.η X)) ⟩
(((η' X +₁ idC) ∘ (μK.η X +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
(((η' X ∘ μK.η X +₁ idC) ∘ g) #T)
(((η' X ∘ μK.η X +₁ idC) ∘ g) #T) ∎
pres₂ : ∀ {Z} {g : Z ⇒ K.₀ (K.₀ X) + Z} → (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ g #K ≈ ((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T
pres₂ {Z} {g} = begin
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ (g #K) ≈⟨ pullʳ (pullʳ (η'-preserves g)) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ (((η' (K.₀ X) +₁ idC) ∘ g) #T) ≈⟨ refl⟩∘⟨ ((sym (F₁⇒extend T (η' X))) ⟩∘⟨refl ○ sym (PreElgotMonad.extend-preserves A ((η' (K.₀ X) +₁ idC) ∘ g) (T.η.η (T.F.F₀ X) ∘ η' X)) )⟩
T.μ.η X ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ (sym (elimʳ T.F.identity)) ⟩∘⟨refl ⟩
extend idC ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ sym (PreElgotMonad.extend-preserves A ((extend (T.η.η (T.F.F₀ X) ∘ η' X) +₁ idC) ∘ (η' (K.₀ X) +₁ idC) ∘ g) idC) ⟩
(((extend idC +₁ idC) ∘ (extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ ((elimʳ T.F.identity) ⟩∘⟨ (F₁⇒extend T (η' X))) identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) +₁ idC) ∘ (η' _ +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ assoc identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T) ∎
comm : (T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈ η' X
comm = begin
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ ηK.η (K.₀ X) ≈⟨ (refl⟩∘⟨ sym (commute (η' X))) ⟩∘⟨refl ⟩
(T.μ.η X ∘ η' _ ∘ K.₁ (η' X)) ∘ ηK.η (K.₀ X) ≈⟨ assoc ○ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ sym (monadK.η.commute (η' X))) ⟩
T.μ.η X ∘ η' _ ∘ ηK.η (T.F.F₀ X) ∘ η' X ≈⟨ refl⟩∘⟨ (pullˡ (FreeObject.*-lift (freealgebras _) (T.η.η _))) ⟩
T.μ.η X ∘ T.η.η _ ∘ η' X ≈⟨ cancelˡ (Monad.identityʳ T) ⟩
η' X ∎
(T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X)) ∘ (g #K) ≈⟨ pullʳ (pullʳ (Elgot-Algebra-Morphism.preserves (((freeElgot (K.₀ X)) FreeObject.*) (T.η.η (K.₀ X))))) ⟩
T.μ.η X ∘ T.F.₁ (η' X) ∘ (((η' (K.₀ X) +₁ idC) ∘ g) #T) ≈⟨ refl⟩∘⟨ ((sym (F₁⇒extend T (η' X))) ⟩∘⟨refl ○ sym (PreElgotMonad.pres A ((η' (K.₀ X) +₁ idC) ∘ g) (T.η.η (T.F.F₀ X) ∘ η' X)) )⟩
T.μ.η X ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ (sym μ-extend) ⟩∘⟨refl ⟩
extend idC ∘ ((extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T ≈⟨ sym (PreElgotMonad.pres A ((extend (T.η.η (T.F.F₀ X) ∘ η' X) +₁ idC) ∘
(η' (K.₀ X) +₁ idC) ∘ g) idC) ⟩
(((extend idC +₁ idC) ∘ (extend (T.η.η _ ∘ η' _) +₁ idC) ∘ ((η' _ +₁ idC)) ∘ g) #T) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ (μ-extend ⟩∘⟨ (F₁⇒extend T (η' X))) identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) +₁ idC) ∘ (η' _ +₁ idC) ∘ g) #T) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras A) (pullˡ (+₁∘+₁ ○ +₁-cong₂ assoc identity²)) ⟩
(((T.μ.η X ∘ T.F.₁ (η' X) ∘ η' (K.₀ X) +₁ idC) ∘ g) #T) ∎
where
μ-extend : extend idC ≈ T.μ.η X
μ-extend = begin
T.μ.η _ ∘ T.F.₁ idC ≈⟨ elimʳ T.F.identity ⟩
T.μ.η X ∎
!-unique : ∀ {A : PreElgotMonad} (f : PreElgotMonad-Morphism preElgot A) → PreElgotMonad-Morphism.α (! {A = A}) ≃ PreElgotMonad-Morphism.α f
!-unique {A} f {X} = sym (FreeObject.*-uniq
(freeElgot X)
{A = record { A = T.F.F₀ X ; algebra = PreElgotMonad.elgotalgebras A }}
(T.η.η X)
(record { h = α.η X ; preserves = preserves _ })
α-η)
!-unique {A} f {X} = sym (*-uniq (T.η.η X) (record
{ h = α.η X
; preserves = preserves _
}) α-η)
where
open PreElgotMonad-Morphism f using (α; α-η; preserves)
open PreElgotMonad A using (T)
module T = Monad T
open FreeObject (freeElgot X)
```

View file

@ -1,73 +0,0 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Category.Instance.AmbientCategory using (Ambient)
open import Categories.Monad.Construction.Kleisli
open import Categories.Monad
open import Categories.Monad.Strong
open import Categories.Monad.Relative renaming (Monad to RMonad)
open import Categories.Functor
open import Data.Product using (_,_)
```
-->
```agda
module Monad.PreElgot {o e} (ambient : Ambient o e) where
open Ambient ambient
open HomReasoning
open MR C
open Equiv
open import Algebra.ElgotAlgebra ambient
```
# (strong) pre-Elgot monads
```agda
record IsPreElgot (T : Monad C) : Set (o ⊔ ⊔ e) where
open Monad T
open RMonad (Monad⇒Kleisli C T) using (extend)
open Functor F renaming (F₀ to T₀; F₁ to T₁)
-- every TX needs to be equipped with an elgot algebra structure
field
elgotalgebras : ∀ {X} → Elgot-Algebra-on (T₀ X)
module elgotalgebras {X} = Elgot-Algebra-on (elgotalgebras {X})
-- where kleisli lifting preserves iteration
field
extend-preserves : ∀ {X Y Z} (f : Z ⇒ T₀ X + Z) (h : X ⇒ T₀ Y)
→ elgotalgebras._# ((extend h +₁ idC) ∘ f) ≈ extend h ∘ elgotalgebras._# {X} f
record PreElgotMonad : Set (o ⊔ ⊔ e) where
field
T : Monad C
isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public
record IsStrongPreElgot (SM : StrongMonad monoidal) : Set (o ⊔ ⊔ e) where
open StrongMonad SM using (M; strengthen)
open Monad M using (F)
-- M is pre-Elgot
field
preElgot : IsPreElgot M
open IsPreElgot preElgot public
-- and strength is iteration preserving
field
strengthen-preserves : ∀ {X Y Z} (f : Z ⇒ F.₀ Y + Z)
→ strengthen.η (X , Y) ∘ (idC ⁂ elgotalgebras._# f) ≈ elgotalgebras._# ((strengthen.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ f))
record StrongPreElgotMonad : Set (o ⊔ ⊔ e) where
field
SM : StrongMonad monoidal
isStrongPreElgot : IsStrongPreElgot SM
open IsStrongPreElgot isStrongPreElgot public
```