Compare commits

..

No commits in common. "230b34da49d39e09ee5b76c3c87ee38bfe2bebca" and "7397991ac7d44ba84c13fa8e82722526c0785ecd" have entirely different histories.

3 changed files with 131 additions and 199 deletions

3
.gitignore vendored
View file

@ -1,5 +1,4 @@
*.agdai *.agdai
*.pdf *.pdf
*.log *.log
Everything.agda Everything.agda
public/

View file

@ -20,10 +20,7 @@ open:
push: all push: all
mv public/Everything.html public/index.html mv public/Everything.html public/index.html
chmod +w public/Agda.css scp -r public hy84coky@cip2a7.cip.cs.fau.de:.www/public
mv public bsc-thesis
scp -r bsc-thesis hy84coky@cip2a7.cip.cs.fau.de:.www/
mv bsc-thesis public
Everything.agda: Everything.agda:

View file

@ -1,5 +1,6 @@
<!-- <!--
```agda ```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level open import Level
open import Categories.Category open import Categories.Category
open import Categories.Monad open import Categories.Monad
@ -9,12 +10,10 @@ open import Categories.Category.Extensive
open import Categories.Category.BinaryProducts open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian open import Categories.Category.Cartesian
open import Categories.Category.Cartesian.Bundle open import Categories.Category.Cartesian
open import Categories.Object.Terminal open import Categories.Object.Terminal
open import Categories.Object.Initial
open import Categories.Object.Coproduct open import Categories.Object.Coproduct
open import Categories.Category.Construction.F-Coalgebras open import Categories.Category.Construction.F-Coalgebras
open import Categories.Category.Construction.F-Algebras
open import Categories.Functor.Coalgebra open import Categories.Functor.Coalgebra
open import Categories.Functor open import Categories.Functor
open import Categories.Functor.Algebra open import Categories.Functor.Algebra
@ -30,59 +29,50 @@ import Categories.Morphism.Reasoning as MR
## Summary ## Summary
This file introduces the delay monad ***D*** This file introduces the delay monad ***D***
- [ ] *Proposition 1* Characterization of the delay monad ***D***
- [ ] *Proposition 2* ***D*** is commutative
## Code ## Code
```agda ```agda
module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o e) where module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o e) where
```
<!--
```agda
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC) open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive) open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian ED) open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
open BinaryProducts products open BinaryProducts products
CC : CartesianCategory o e
CC = record { U = C ; cartesian = (ExtensiveDistributiveCategory.cartesian ED) }
open import Categories.Object.NaturalNumbers.Parametrized CC
open import Categories.Object.NaturalNumbers.Properties.F-Algebras using (PNNO⇒Initial₂; PNNO-Algebra)
open M C open M C
open MR C open MR C
open Equiv open Equiv
open HomReasoning open HomReasoning
open CoLambek open CoLambek
open F-Coalgebra-Morphism renaming (f to u)
open F-Coalgebra
``` ```
--> ### *Proposition 1*: Characterization of the delay monad ***D***
The Delay monad is usually described by existence of final coalgebras for the functor `(X + -)` where `X` is some arbitrary object.
This functor trivially sends objects `Y` to `X + Y` and functions `f` to `id + f`.
```agda ```agda
delayF : Obj → Endofunctor C
delayF Y = record
{ F₀ = Y +_
; F₁ = idC +₁_
; identity = CC.coproduct.unique id-comm-sym id-comm-sym
; homomorphism = ⟺ (+₁∘+₁ ○ +₁-cong₂ identity² refl)
; F-resp-≈ = +₁-cong₂ refl
}
record DelayM : Set (o ⊔ ⊔ e) where record DelayM : Set (o ⊔ ⊔ e) where
field field
coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (A +-)) algebras : ∀ (A : Obj) → Terminal (F-Coalgebras (delayF A))
```
module D A = Functor (delayF A)
These are all the fields this record needs!
Of course this doesn't tell us very much, so our goal will be to extract a monad from this definition.
Conventionally the delay monad is described via functions `now` and `later` where the former lifts a value into a computation and the latter postpones a computation by one time unit.
We can now define these functions by bisecting the isomorphism `out : DX ≅ X + DX` which we get by Lambek's lemma. (Here `DX` is the element of the final coalgebra for `X`)
```agda
module _ (X : Obj) where module _ (X : Obj) where
open Terminal (coalgebras X) using (; !; !-unique) open Terminal (algebras X) using (; !)
open F-Coalgebra renaming (A to DX) open F-Coalgebra renaming (A to DX)
D₀ = DX D₀ = DX
out-≅ : DX ≅ X + DX out-≅ : DX ≅ X + DX
out-≅ = colambek {F = X +- } (coalgebras X) out-≅ = colambek {F = delayF X} (algebras X)
-- note: out-≅.from ≡ .α -- note: out-≅.from ≡ .α
open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public
@ -93,204 +83,150 @@ We can now define these functions by bisecting the isomorphism `out : DX ≅ X +
later : DX ⇒ DX later : DX ⇒ DX
later = out⁻¹ ∘ i₂ later = out⁻¹ ∘ i₂
-- TODO inline
unitlaw : out ∘ now ≈ i₁ unitlaw : out ∘ now ≈ i₁
unitlaw = cancelˡ (_≅_.isoʳ out-≅) unitlaw = cancelˡ (_≅_.isoʳ out-≅)
```
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use our terminal coalgebras to get a *coiteration operator* `coit`:
TODO add diagram
```agda
module _ {Y : Obj} where module _ {Y : Obj} where
coit : Y ⇒ X + Y → Y ⇒ DX coit : Y ⇒ X + Y → Y ⇒ DX
coit f = u (! {A = record { A = Y ; α = f }}) coit f = F-Coalgebra-Morphism.f (! {A = record { A = Y ; α = f }})
coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f
coit-commutes f = commutes (! {A = record { A = Y ; α = f }}) coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
```
If we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y + \_)`-functor defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras.
TODO add diagram
```agda
module _ ( : ParametrizedNNO) where
open ParametrizedNNO
iso : X × N ≅ X + X × N
iso = Lambek.lambek (record { ⊥ = PNNO-Algebra CC coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ CC coproducts X })
ι : X × N ⇒ DX
ι = u (! {A = record { A = X × N ; α = _≅_.from iso }})
```
With these definitions at hand, we can now indeed construct a monad (in extension form) as the triple `(F₀, unit, extend)`.
`F₀` corresponds to `D₀` of course and `unit` is `now`, the tricky part is kleisli lifting aka. `extend`.
TODO
```agda
monad : Monad C monad : Monad C
monad = Kleisli⇒Monad C (record monad = Kleisli⇒Monad C (record
{ F₀ = D₀ { F₀ = D₀
; unit = λ {X} → now X ; unit = λ {X} → now X
; extend = extend ; extend = extend
; identityʳ = identityʳ' ; identityʳ = λ {X} {Y} {f} → begin
; identityˡ = identityˡ' extend f ∘ now X ≈⟨ (insertˡ (_≅_.isoˡ (out-≅ Y))) ⟩∘⟨refl ⟩
; assoc = assoc' (out⁻¹ Y ∘ out Y ∘ extend f) ∘ now X ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩
; sym-assoc = sym assoc' (out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ out X) ∘ now X ≈⟨ pullʳ (pullʳ (unitlaw X)) ⟩
; extend-≈ = extend-≈' out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
out⁻¹ Y ∘ out Y ∘ f ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) ⟩
f ∎
; identityˡ = λ {X} → Terminal.-id (algebras X) (record { f = extend (now X) ; commutes = begin
out X ∘ extend (now X) ≈⟨ pullˡ ((F-Coalgebra-Morphism.commutes (Terminal.! (algebras X) {A = alg (now X)}))) ⟩
((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ F-Coalgebra.α (alg (now X))) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
(idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))
∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out X ∘ (now X)) , i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ (unitlaw X)) ○ inject₁) refl ⟩∘⟨refl ⟩
(idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₁
, (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
[ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ refl assoc) ⟩∘⟨refl ⟩
[ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ (elimˡ +-η) ⟩∘⟨refl ⟩
(idC +₁ extend (now X)) ∘ out X ∎ })
; assoc = {! !}
; sym-assoc = {! !}
; extend-≈ = λ {X} {Y} {f} {g} eq → begin
F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (Terminal.!-unique (algebras Y) (record { f = (F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ; commutes = begin
F-Coalgebra.α (Terminal. (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
F-Coalgebra.α (Terminal. (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ≈⟨ F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y)) ⟩
Functor.F₁ (delayF Y) (F-Coalgebra-Morphism.f (Terminal.! (algebras Y))) ∘ F-Coalgebra.α (alg g) ≈˘⟨ (Functor.F-resp-≈ (delayF Y) identityʳ) ⟩∘⟨ (αf≈αg eq) ⟩
Functor.F₁ (delayF Y) (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC) ∘ F-Coalgebra.α (alg f) ∎ })) ⟩∘⟨refl ⟩
(F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩
extend g ∎
}) })
where where
open Terminal alg' : ∀ {X Y} → F-Coalgebra (delayF Y)
alg' {X} {Y} = record { A = D₀ X ; α = i₂ }
module _ {X Y : Obj} (f : X ⇒ D₀ Y) where module _ {X Y : Obj} (f : X ⇒ D₀ Y) where
alg : F-Coalgebra (Y +-) open Terminal (algebras Y) using (!; -id)
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] } alg : F-Coalgebra (delayF Y)
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] } -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm)
extend : D₀ X ⇒ D₀ Y extend : D₀ X ⇒ D₀ Y
extend = u (! (coalgebras Y) {A = alg}) ∘ i₁ {B = D₀ Y} extend = F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₁ {B = D₀ Y}
!∘i₂ : F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₂ ≈ idC
!∘i₂ : u (! (coalgebras Y) {A = alg}) ∘ i₂ ≈ idC !∘i₂ = -id (F-Coalgebras (delayF Y) [ ! ∘ record { f = i₂ ; commutes = inject₂ } ] )
!∘i₂ = -id (coalgebras Y) (F-Coalgebras (Y +-) [ ! (coalgebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] )
extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X
extendlaw = begin extendlaw = begin
out Y ∘ extend ≈⟨ pullˡ (commutes (! (coalgebras Y) {A = alg})) ⟩ out Y ∘ extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! {A = alg})) ⟩
((idC +₁ (u (! (coalgebras Y)))) ∘ α alg) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩ ((idC +₁ (F-Coalgebra-Morphism.f !)) ∘ F-Coalgebra.α alg) ∘ coproduct.i₁ ≈⟨ pullʳ inject₁ ⟩
(idC +₁ (u (! (coalgebras Y)))) ∘ [ [ i₁ , i₂ ∘ i₂ ] (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩ [ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
[ (idC +₁ (u (! (coalgebras Y)))) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩ [ [ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₁
[ [ (idC +₁ (u (! (coalgebras Y)))) ∘ i₁ , (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f) , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl ⟩
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ [ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₂ ] ∘ (out Y ∘ f)
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩
refl) ⟩∘⟨refl ⟩ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
[ [ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₂ ] ∘ (out Y ∘ f) αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → F-Coalgebra.α (alg f) ≈ F-Coalgebra.α (alg g)
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂
(elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η))
assoc) ⟩∘⟨refl ⟩
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
extend-unique : (g : D₀ X ⇒ D₀ Y) → (out Y ∘ g ≈ [ out Y ∘ f , i₂ ∘ g ] ∘ out X) → extend ≈ g
extend-unique g g-commutes = begin
extend ≈⟨ (!-unique (coalgebras Y) (record { f = [ g , idC ] ; commutes = begin
out Y ∘ [ g , idC ] ≈⟨ ∘[] ⟩
[ out Y ∘ g , out Y ∘ idC ] ≈⟨ []-cong₂ g-commutes identityʳ ⟩
[ [ out Y ∘ f , i₂ ∘ g ] ∘ out X , out Y ] ≈˘⟨ []-cong₂
(([]-cong₂
(([]-cong₂ refl identityʳ) ⟩∘⟨refl ○ (elimˡ +-η))
refl)
⟩∘⟨refl)
refl ⟩
[ [ [ i₁ , i₂ ∘ idC ] ∘ (out Y ∘ f)
, i₂ ∘ g ] ∘ out X
, out Y ] ≈˘⟨ []-cong₂
(([]-cong₂
(([]-cong₂ identityʳ (pullʳ inject₂)) ⟩∘⟨refl)
refl)
⟩∘⟨refl)
refl
[ [ [ i₁ ∘ idC
, (i₂ ∘ [ g , idC ]) ∘ i₂ ] ∘ (out Y ∘ f)
, i₂ ∘ g ] ∘ out X
, out Y ] ≈˘⟨ []-cong₂
(([]-cong₂
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
(pullʳ inject₁))
⟩∘⟨refl)
(elimˡ (Functor.identity (Y +-)))
[ [ [ (idC +₁ [ g , idC ]) ∘ i₁
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (i₂ ∘ [ g , idC ]) ∘ i₁ ] ∘ out X
, (idC +₁ idC) ∘ out Y ] ≈˘⟨ []-cong₂
(([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl)
((+₁-cong₂ identity² inject₂) ⟩∘⟨refl) ⟩
[ [ (idC +₁ [ g , idC ]) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₁ ] ∘ out X
, (idC ∘ idC +₁ [ g , idC ] ∘ i₂) ∘ out Y ] ≈˘⟨ []-cong₂ (pullˡ ∘[]) (pullˡ +₁∘+₁) ⟩
[ (idC +₁ [ g , idC ]) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X
, (idC +₁ [ g , idC ]) ∘ (idC +₁ i₂) ∘ out Y ] ≈˘⟨ ∘[] ⟩
(idC +₁ [ g , idC ]) ∘ α alg ∎ })) ⟩∘⟨refl ⟩
[ g , idC ] ∘ i₁ ≈⟨ inject₁ ⟩
g ∎
αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → α (alg f) ≈ α (alg g)
αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (delayF Y)) (alg f) (alg g)
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (Y +-)) (alg f) (alg g)
alg-f≈alg-g {X} {Y} {f} {g} eq = record alg-f≈alg-g {X} {Y} {f} {g} eq = record
{ from = record { f = idC ; commutes = begin { from = record { f = idC ; commutes = begin
α (alg g) ∘ idC ≈⟨ identityʳ ⟩ F-Coalgebra.α (alg g) ∘ idC ≈⟨ identityʳ ⟩
α (alg g) ≈⟨ ⟺ (αf≈αg eq) ⟩ F-Coalgebra.α (alg g) ≈⟨ ⟺ (αf≈αg eq) ⟩
α (alg f) ≈˘⟨ elimˡ identity F-Coalgebra.α (alg f) ≈˘⟨ elimˡ (Functor.identity (delayF Y)) ⟩
(idC +₁ idC) ∘ α (alg f) ∎ } Functor.F₁ (delayF Y) idC ∘ F-Coalgebra.α (alg f) ∎ }
; to = record { f = idC ; commutes = begin ; to = record { f = idC ; commutes = begin
α (alg f) ∘ idC ≈⟨ identityʳ ⟩ F-Coalgebra.α (alg f) ∘ idC ≈⟨ identityʳ ⟩
α (alg f) ≈⟨ αf≈αg eq ⟩ F-Coalgebra.α (alg f) ≈⟨ αf≈αg eq ⟩
α (alg g) ≈˘⟨ elimˡ identity F-Coalgebra.α (alg g) ≈˘⟨ elimˡ (Functor.identity (delayF Y)) ⟩
(idC +₁ idC) ∘ α (alg g) ∎ } Functor.F₁ (delayF Y) idC ∘ F-Coalgebra.α (alg g) ∎ }
; iso = record ; iso = record
{ isoˡ = identity² { isoˡ = identity²
; isoʳ = identity² ; isoʳ = identity²
} }
} }
where open Functor (Y +-) using (identity) ```
identityʳ' : ∀ {X} {Y} {f} → extend f ∘ now X ≈ f ### Old definitions:
identityʳ' {X} {Y} {f} = begin
extend f ∘ now X ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩∘⟨refl ⟩
(out⁻¹ Y ∘ out Y ∘ extend f) ∘ now X ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩
(out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ out X) ∘ now X ≈⟨ pullʳ (pullʳ (unitlaw X)) ⟩
out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
out⁻¹ Y ∘ out Y ∘ f ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) ⟩
f ∎
identityˡ' : ∀ {X} → extend (now X) ≈ idC ```agda
identityˡ' {X} = Terminal.-id (coalgebras X) (record { f = extend (now X) ; commutes = begin record DelayMonad : Set (o ⊔ ⊔ e) where
out X ∘ extend (now X) ≈⟨ pullˡ ((commutes (! (coalgebras X) {A = alg (now X)}))) ⟩ field
((idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ α (alg (now X))) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩ D₀ : Obj → Obj
(idC +₁ (u (! (coalgebras X) {A = alg (now X)})))
∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out X ∘ (now X)) , i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ unitlaw X) ○ inject₁) refl ⟩∘⟨refl ⟩
(idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ (idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₁
, (idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ []-cong₂ +₁∘i₁ (pullˡ +₁∘i₂) ⟩∘⟨refl ⟩
[ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₁ ] ∘ out X ≈⟨ []-cong₂ refl assoc ⟩∘⟨refl ⟩
[ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ elimˡ +-η ⟩∘⟨refl ⟩
(idC +₁ extend (now X)) ∘ out X ∎ })
assoc' : ∀ {X} {Y} {Z} {g} {h} → extend (extend h ∘ g) ≈ extend h ∘ extend g field
assoc' {X} {Y} {Z} {g} {h} = extend-unique (extend h ∘ g) (extend h ∘ extend g) (begin now : ∀ {X} → X ⇒ D₀ X
out Z ∘ extend h ∘ extend g ≈⟨ pullˡ (extendlaw h) ⟩ later : ∀ {X} → D₀ X ⇒ D₀ X
([ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y) ∘ extend g ≈⟨ pullʳ (extendlaw g) ⟩ isIso : ∀ {X} → IsIso ([ now {X} , later {X} ])
[ out Z ∘ h , i₂ ∘ extend h ] ∘ [ out Y ∘ g , i₂ ∘ extend g ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ [ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y ∘ g out : ∀ {X} → D₀ X ⇒ X + D₀ X
, [ out Z ∘ h , i₂ ∘ extend h ] ∘ i₂ ∘ extend g ] ∘ out X ≈⟨ []-cong₂ (pullˡ (⟺ (extendlaw h))) (pullˡ inject₂) ⟩∘⟨refl ⟩ out {X} = IsIso.inv (isIso {X})
[ (out Z ∘ extend h) ∘ g , (i₂ ∘ extend h) ∘ extend g ] ∘ out X ≈⟨ ([]-cong₂ assoc assoc) ⟩∘⟨refl ⟩
[ out Z ∘ extend h ∘ g , i₂ ∘ extend h ∘ extend g ] ∘ out X ∎) field
coit : ∀ {X Y} → Y ⇒ X + Y → Y ⇒ D₀ X
extend-≈' : ∀ {X} {Y} {f g : X ⇒ D₀ Y} → f ≈ g → extend f ≈ extend g coit-law : ∀ {X Y} {f : Y ⇒ X + Y} → out ∘ (coit f) ≈ (idC +₁ (coit f)) ∘ f
extend-≈' {X} {Y} {f} {g} eq = begin
u (! (coalgebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (!-unique (coalgebras Y) (record { f = (u (! (coalgebras Y) {A = alg g }) ∘ idC) ; commutes = begin field
α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩ _* : ∀ {X Y} → X ⇒ D₀ Y → D₀ X ⇒ D₀ Y
α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ≈⟨ commutes (! (coalgebras Y)) ⟩ *-law : ∀ {X Y} {f : X ⇒ D₀ Y} → out ∘ (f *) ≈ [ out ∘ f , i₂ ∘ (f *) ] ∘ out
(idC +₁ u (! (coalgebras Y))) ∘ α (alg g) ≈˘⟨ Functor.F-resp-≈ (Y +-) identityʳ ⟩∘⟨ αf≈αg eq ⟩ *-unique : ∀ {X Y} (f : X ⇒ D₀ Y) (h : D₀ X ⇒ D₀ Y) → h ≈ f *
(idC +₁ u (! (coalgebras Y)) ∘ idC) ∘ α (alg f) ∎ })) *-resp-≈ : ∀ {X Y} {f h : X ⇒ D₀ Y} → f ≈ h → f * ≈ h *
⟩∘⟨refl ⟩
(u (! (coalgebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩ unitLaw : ∀ {X} → out {X} ∘ now {X} ≈ i₁
extend g ∎ unitLaw = begin
out ∘ now ≈⟨ refl⟩∘⟨ sym inject₁ ⟩
out ∘ [ now , later ] ∘ i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) ⟩
i₁ ∎
toMonad : KleisliTriple C
toMonad = record
{ F₀ = D₀
; unit = now
; extend = _*
; identityʳ = λ {X} {Y} {k} → begin
k * ∘ now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl ⟩
(([ now , later ] ∘ out) ∘ k *) ∘ now ≈⟨ pullʳ *-law ⟩∘⟨refl ⟩
([ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitLaw) ⟩
[ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
[ now , later ] ∘ out ∘ k ≈⟨ cancelˡ (IsIso.isoʳ isIso) ⟩
k ∎
; identityˡ = λ {X} → sym (*-unique now idC)
; assoc = λ {X} {Y} {Z} {f} {g} → sym (*-unique ((g *) ∘ f) ((g *) ∘ (f *)))
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
; extend-≈ = *-resp-≈
}
``` ```
### Definition 30: Search-Algebras ### Definition 30: Search-Algebras
TODO TODO
### Proposition 31 : the category of uniform-iteration coalgebras coincides with the category of search-coalgebras ### Proposition 31 : the category of uniform-iteration algebras coincides with the category of search-algebras
TODO TODO