@ -1,6 +1,5 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Categories.Category
open import Categories.Monad
@ -72,7 +71,6 @@ We then use Lambek's Lemma to gain an isomorphism `D X ≅ X + D X`, whose inver
unitlaw : out ∘ now ≈ i₁
unitlaw = cancelˡ (_≅_.isoʳ out-≅)
```
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use the final coalgebras to get a *coiteration operator* `coit` :
@ -100,7 +98,6 @@ At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y
ι : X × N ⇒ DX
ι = u (! {A = record { A = X × N ; α = _≅_ .from nno-iso }})
```
## Delay is a monad
@ -294,7 +291,7 @@ Next we will show that the delay monad is strong, by giving a natural transforma
open import Categories.Category.Monoidal.Core
open Monoidal monoidal
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
open RMonad kleisli using (extend) renaming (assoc to k-assoc)
open RMonad kleisli using (extend; extend-≈ ) renaming (assoc to k-assoc; identityʳ to k-identityʳ )
open import Categories.Category.Product renaming (Product to CProduct; _⁂_ to _× C_ )
open Monad monad using () renaming (η to η'; μ to μ')
module η = NaturalTransformation η'
@ -306,12 +303,12 @@ Next we will show that the delay monad is strong, by giving a natural transforma
; commute = commute' })
; identityˡ = identityˡ' -- triangle
; η-comm = begin -- η-τ
τ _ ∘ (idC ⁂ now) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (sym identity²) refl ○ sym ⁂∘⁂) ⟩
τ _ ∘ (idC ⁂ out⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullˡ (τ-helper _ ) ⟩
(out⁻¹ ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullʳ (pullʳ dstr-law₁) ⟩
out⁻¹ ∘ (idC +₁ τ _) ∘ i₁ ≈⟨ refl⟩∘⟨ +₁∘i₁ ⟩
out⁻¹ ∘ i₁ ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
now ∎
τ _ ∘ (idC ⁂ now) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (sym identity²) refl ○ sym ⁂∘⁂) ⟩
τ _ ∘ (idC ⁂ out⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullˡ (τ-helper _ ) ⟩
(out⁻¹ ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullʳ (pullʳ dstr-law₁) ⟩
out⁻¹ ∘ (idC +₁ τ _) ∘ i₁ ≈⟨ refl⟩∘⟨ +₁∘i₁ ⟩
out⁻¹ ∘ i₁ ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
now ∎
; μ-η-comm = μ-η-comm' -- μ-τ
; strength-assoc = strength-assoc' -- square
}
@ -346,6 +343,15 @@ Next we will show that the delay monad is strong, by giving a natural transforma
out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∘ (idC ⁂ out⁻¹) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ (elimʳ (⁂∘⁂ ○ (⁂-cong₂ identity² (_≅_.isoʳ out-≅)) ○ ((⟨⟩-cong₂ identityˡ identityˡ) ○ ⁂-η)))) ⟩
out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∎
τ-now : τ ∘ (idC ⁂ now) ≈ now
τ-now = begin
τ ∘ (idC ⁂ now) ≈⟨ refl⟩∘⟨ sym (⁂∘⁂ ○ (⁂-cong₂ identity² refl)) ⟩
τ ∘ (idC ⁂ out⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullˡ τ-helper ⟩
(out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullʳ (pullʳ dstr-law₁) ⟩
out⁻¹ ∘ (idC +₁ τ) ∘ i₁ ≈⟨ refl⟩∘⟨ +₁∘i₁ ⟩
out⁻¹ ∘ i₁ ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
now ∎
τ-unique : (t : X × D₀ Y ⇒ D₀ (X × Y)) → (out ∘ t ≈ (idC +₁ t) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)) → t ≈ τ
τ-unique t t-commutes = sym (!-unique (record { f = t ; commutes = t-commutes }))
@ -388,52 +394,71 @@ Next we will show that the delay monad is strong, by giving a natural transforma
π₂ ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ pullˡ ∘[] ⟩
[ π₂ ∘ ((idC ⁂ i₁)) , π₂ ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎)
μ-η-comm' : ∀ {X Y} → extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ≈ τ (X , Y) ∘ (idC ⁂ extend idC)
μ-η-comm' {X} {Y} = begin
extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ≈⟨ sym (Terminal.!-unique (coalgebras (X × Y)) (record { f = extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ; commutes = begin
out ∘ extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _ ≈⟨ pullˡ (extendlaw idC) ⟩
([ out ∘ idC , i₂ ∘ extend idC ] ∘ out) ∘ extend (now ∘ τ (X , Y)) ∘ τ _ ≈⟨ pullʳ (pullˡ (extendlaw (now ∘ τ (X , Y)))) ⟩
[ out ∘ idC , i₂ ∘ extend idC ] ∘ ([ out ∘ now ∘ τ _ , i₂ ∘ extend (now ∘ τ _ ) ] ∘ out) ∘ τ _ ≈⟨ refl⟩∘⟨ (pullʳ (τ-law _ )) ⟩
[ out ∘ idC , i₂ ∘ extend idC ] ∘ [ out ∘ now ∘ τ _ , i₂ ∘ extend (now ∘ τ _ ) ] ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ (sym []∘+₁) ⟩∘⟨ (([]-cong₂ (pullˡ unitlaw) refl) ⟩∘⟨refl) ⟩
([ out , i₂ ] ∘ (idC +₁ extend idC)) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
-- TODO only works if (now +₁ now) ∘ out ≈ out ∘ now
{! !} ≈⟨ {! !} ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (now +₁ idC) ∘ (idC +₁ now) ∘ out , (now +₁ idC) ∘ i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (now +₁ idC) ∘ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (now +₁ idC)) ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ ((idC ⁂ now) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
[ out ∘ (τ _ ∘ (idC ⁂ now)) , i₂ ] ∘ (idC +₁ extend idC) ∘ (idC +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
[ out ∘ now , i₂ ] ∘ (idC +₁ extend idC) ∘ (idC +₁ extend (now ∘ τ _)) ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ extend idC) ∘ (idC +₁ extend (now ∘ τ _)) ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ (extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ∎ })) ⟩
u (Terminal.! (coalgebras (X × Y)) {A = record { A = X × D₀ (D₀ Y) ; α = distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) }}) ≈⟨ {! !} ⟩
out ∘ extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _ ≈⟨ refl⟩∘⟨ (pullˡ id*∘Dτ) ⟩
out ∘ extend (τ (X , Y)) ∘ τ _ ≈⟨ square ⟩
[ out ∘ τ _ , i₂ ∘ extend (τ _ ) ] ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ sym-assoc ○ sym-assoc ○ (assoc ○ tri) ⟩∘⟨refl ⟩
((idC +₁ extend (τ _) ∘ τ _ ) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹) ∘ (idC ⁂ out) ≈⟨ assoc ○ refl⟩∘⟨ assoc ⟩
(idC +₁ (extend (τ _) ∘ τ _ )) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ (+₁-cong₂ refl (sym (pullˡ id*∘Dτ))) ⟩∘⟨refl ⟩
(idC +₁ (extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∎ })) ⟩
u (Terminal.! (coalgebras (X × Y)) {A = record { A = X × D₀ (D₀ Y) ; α = [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) }}) ≈⟨ Terminal.!-unique (coalgebras (X × Y)) (record { f = τ _ ∘ (idC ⁂ extend idC) ; commutes = begin
out ∘ τ _ ∘ (idC ⁂ extend idC) ≈⟨ pullˡ (τ-law (X , Y)) ⟩
((idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)) ∘ (idC ⁂ extend idC) ≈⟨ pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out ∘ extend idC) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ refl (extendlaw idC) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out ∘ idC , i₂ ∘ extend idC ] ∘ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ refl (([]-cong₂ identityʳ refl) ⟩∘⟨refl) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ] ∘ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym (⁂∘⁂ ○ ⁂-cong₂ identity² refl) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ (idC ⁂ out) ≈⟨ sym-assoc ○ pullˡ (assoc ○ tri₂) ⟩
((idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹) ∘ (idC ⁂ out) ≈⟨ assoc ○ refl⟩∘⟨ assoc ⟩
(idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∎ }) ⟩
τ _ ∘ (idC ⁂ extend idC) ∎
where
β : ∀ {A} → D₀ A + D₀ (D₀ A) ⇒ A + D₀ (D₀ A)
β {A} = [ ((idC +₁ now) ∘ out) , i₂ ]
β⁻¹ : ∀ {A} → A + D₀ (D₀ A) ⇒ D₀ A + D₀ (D₀ A)
β⁻¹ {A} = [ (i₁ ∘ now) , i₂ ]
β∘β⁻¹ : ∀ {A} → β {A} ∘ β⁻¹ ≈ idC
β∘β⁻¹ = begin
[ ((idC +₁ now) ∘ out) , i₂ ] ∘ [ (i₁ ∘ now) , i₂ ] ≈⟨ ∘[] ⟩
[ [ ((idC +₁ now) ∘ out) , i₂ ] ∘ (i₁ ∘ now) , [ ((idC +₁ now) ∘ out) , i₂ ] ∘ i₂ ] ≈⟨ []-cong₂ (pullˡ inject₁) inject₂ ⟩
[ ((idC +₁ now) ∘ out) ∘ now , i₂ ] ≈⟨ []-cong₂ (pullʳ unitlaw) refl ⟩
[ (idC +₁ now) ∘ i₁ , i₂ ] ≈⟨ []-cong₂ (+₁∘i₁ ○ identityʳ) refl ⟩
[ i₁ , i₂ ] ≈⟨ +-η ⟩
idC ∎
-- diag₁ : ((idC ⁂ now) +₁ τ _) ∘ distributeˡ⁻¹ {X} {Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈ out ∘ τ _
-- diag₁ = begin
-- ((idC ⁂ now) +₁ τ _) ∘ distributeˡ⁻¹ {X} {Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
-- (idC +₁ τ _) ∘ ((idC ⁂ now) +₁ idC) ∘ distributeˡ⁻¹ {X} {Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ((idC ⁂ (now +₁ idC))) ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (now +₁ idC) ∘ (idC +₁ now) ∘ out , (now +₁ idC) ∘ i₂ ] ∘ out) ≈⟨ {! !} ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (now +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ out ∘ now , i₂ ] ∘ out) ≈⟨ {! !} ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ out) ≈⟨ sym (τ-law (X , A (Terminal.⊤ (coalgebras Y)))) ⟩
-- out ∘ τ _ ∎
diag₂ = τ-law
diag₃ = out-law {Y = D₀ (X × Y)} (extend idC)
-- diagram: https://q.uiver.app/#q=WzAsNyxbMCwwLCJYXFx0aW1lcyBERFkiXSxbMiwwLCJEKFhcXHRpbWVzIERZKSJdLFs0LDAsIkREKFhcXHRpbWVzIFkpIl0sWzAsMiwiWFxcdGltZXMgKERZK0REWSkiXSxbMiwyLCJYXFx0aW1lcyBEWSsgWFxcdGltZXMgRERZIl0sWzQsMiwiWFxcdGltZXMgWSsgREQoWFxcdGltZXMgWSkiXSxbMCw0LCJYXFx0aW1lcyBZKyBYXFx0aW1lcyBERFkiXSxbMCwzLCJpZFxcdGltZXMgb3V0IiwyXSxbMCwxLCJcXHRhdSJdLFsxLDIsIlxcdGF1XioiXSxbMyw0LCIoaWQrXFx0YXUpZGlzdCJdLFs0LDUsIltvdXRcXHRhdSxpbnJcXHRhdV4qXSJdLFsyLDUsIm91dCJdLFsxLDRdLFs2LDUsImlkK1xcdGF1XipcXHRhdSIsMl0sWzMsNiwiWyhpZCArIGlkXFx0aW1lcyBub3cpZGlzdCAoaWRcXHRpbWVzIG91dCksaW5yXWRpc3QiLDJdXQ==
square : out ∘ extend (τ (X , Y)) ∘ τ _ ≈ [ out ∘ τ _ , i₂ ∘ extend (τ _) ] ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)
square = begin
out ∘ extend (τ (X , Y)) ∘ τ _ ≈⟨ pullˡ (extendlaw (τ (X , Y))) ⟩
([ out ∘ τ (X , Y) , i₂ ∘ extend (τ (X , Y)) ] ∘ out) ∘ τ _ ≈⟨ pullʳ (τ-law _ ) ⟩
[ out ∘ τ _ , i₂ ∘ extend (τ _ ) ] ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∎
tri : [ out ∘ τ _ , i₂ ∘ extend (τ (X , Y)) ] ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ≈ (idC +₁ extend (τ _) ∘ τ _ ) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹
tri = begin
[ out ∘ τ _ , i₂ ∘ extend (τ (X , Y)) ] ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ≈⟨ pullˡ []∘+₁ ⟩
[ (out ∘ τ _) ∘ idC , (i₂ ∘ extend (τ (X , Y))) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ (identityʳ ○ τ-law (X , Y)) assoc) ⟩∘⟨refl ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ extend (τ (X , Y)) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ sym (([]-cong₂ ((+₁-cong₂ refl k-identityʳ) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
[ (idC +₁ extend (τ _) ∘ now) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ extend (τ _ ) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ sym (([]-cong₂ ((+₁-cong₂ identity² (pullʳ (τ-now (X , D₀ Y)))) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
[ (idC ∘ idC +₁ (extend (τ _) ∘ τ _ ) ∘ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ extend (τ _) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ sym (([]-cong₂ (pullˡ +₁∘+₁) +₁∘i₂) ⟩∘⟨refl) ⟩
[ (idC +₁ extend (τ _) ∘ τ _ ) ∘ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , (idC +₁ extend (τ _) ∘ τ _ ) ∘ i₂ ] ∘ distributeˡ⁻¹ ≈⟨ sym (pullˡ ∘[]) ⟩
(idC +₁ extend (τ _) ∘ τ _ ) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∎
id*∘Dτ : extend idC ∘ extend (now ∘ τ _) ≈ extend (τ _ )
id*∘Dτ = begin
extend idC ∘ extend (now ∘ τ _) ≈⟨ sym k-assoc ⟩
extend (extend idC ∘ now ∘ τ _) ≈⟨ extend-≈ (pullˡ k-identityʳ) ⟩
extend (idC ∘ τ _) ≈⟨ extend-≈ identityˡ ⟩
extend (τ _) ∎
tri₂' : (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ [ (idC ⁂ i₁) , (idC ⁂ i₂) ] ≈ (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ distributeˡ
tri₂' = begin
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ [ (idC ⁂ i₁) , (idC ⁂ i₂) ] ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ∘[]) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ [ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ (idC ⁂ i₁) , (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ (idC ⁂ i₂) ] ≈⟨ refl⟩∘⟨ refl⟩∘⟨ []-cong₂ ⁂∘⁂ ⁂∘⁂ ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ [ (idC ∘ idC ⁂ [ out , i₂ ∘ extend idC ] ∘ i₁) , (idC ∘ idC ⁂ [ out , i₂ ∘ extend idC ] ∘ i₂) ] ≈⟨ refl⟩∘⟨ refl⟩∘⟨ []-cong₂ (⁂-cong₂ identity² inject₁) (⁂-cong₂ identity² inject₂) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ [ idC ⁂ out , idC ⁂ i₂ ∘ extend idC ] ≈⟨ refl⟩∘⟨ ∘[] ⟩
(idC +₁ τ _) ∘ [ distributeˡ⁻¹ ∘ (idC ⁂ out) , distributeˡ⁻¹ ∘ (idC ⁂ i₂ ∘ extend idC) ] ≈⟨ ∘[] ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ i₂ ∘ extend idC) ] ≈⟨ sym ([]-cong₂ refl (pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)))) ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , ((idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ i₂)) ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ refl ((refl⟩∘⟨ dstr-law₂) ⟩∘⟨refl) ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , ((idC +₁ τ _ ) ∘ i₂) ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ refl (pushˡ +₁∘i₂) ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ τ _ ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ ((+₁-cong₂ refl (introʳ (⟨⟩-unique id-comm (id-comm ○ (sym k-identityʳ) ⟩∘⟨refl)))) ⟩∘⟨refl) refl ⟩
[ (idC +₁ τ _ ∘ (idC ⁂ extend idC ∘ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ τ _ ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ ((sym (+₁-cong₂ refl (refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)))) ⟩∘⟨refl) refl ⟩
[ (idC +₁ τ _ ∘ (idC ⁂ extend idC) ∘ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ τ _ ∘ (idC ⁂ extend idC) ] ≈⟨ sym ([]-cong₂ (pullˡ (+₁∘+₁ ○ +₁-cong₂ identity² assoc)) +₁∘i₂) ⟩
[ (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ i₂ ] ≈⟨ sym ∘[] ⟩
(idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ≈⟨ sym (refl⟩∘⟨ (elimʳ (IsIso.isoˡ isIsoˡ))) ⟩
(idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ distributeˡ ∎
tri₂ : (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ≈ (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹
tri₂ = iso-epi-from
(record { from = distributeˡ ; to = distributeˡ⁻¹ ; iso = IsIso.iso isIsoˡ })
((idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]))
((idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹)
(assoc ○ refl⟩∘⟨ assoc ○ tri₂' ○ sym-assoc ○ sym-assoc ○ assoc ⟩∘⟨refl)
strength-assoc' : ∀ {X Y Z} → extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ ((X × Y), Z) ≈ τ _ ∘ (idC ⁂ τ _ ) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
strength-assoc' {X} {Y} {Z} = begin
extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ _ ≈⟨ sym (Terminal.!-unique (coalgebras (X × Y × Z)) (record { f = extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ _ ; commutes = begin
@ -487,11 +512,10 @@ Next we will show that the delay monad is strong, by giving a natural transforma
(distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ sym (introʳ (IsIso.isoʳ isIsoˡ)) ⟩
distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ sym (refl⟩∘⟨ ⁂∘⟨⟩) ⟩
distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∎)
{- ⁂ ⊤ ○
Diagram for identityˡ':
https://q.uiver.app/#q=WzAsOSxbMCwyLCIxIFxcdGltZXMgREIiXSxbMiwyLCIxIFxcdGltZXMgKEIgKyBEQikiXSxbNiwyLCIxIFxcdGltZXMgQiArIDEgXFx0aW1lcyBEQiJdLFswLDQsIkQoMSBcXHRpbWVzIEIpIl0sWzYsNCwiKDEgXFx0aW1lcyBCKSArIEQoMSBcXHRpbWVzIEIpIl0sWzAsNiwiREIiXSxbNiw2LCJCICsgREIiXSxbMCwwLCIxIFxcdGltZXMgREIiXSxbNiwwLCJCICsgMSBcXHRpbWVzIERCIl0sWzAsMSwiaWQgXFx0aW1lcyBvdXQiXSxbMSwyLCJkaXN0cmliXnstMX0iXSxbMCwzLCJcXHRhdSIsMl0sWzUsNiwib3V0IiwyXSxbMyw0LCJvdXQiLDJdLFsyLDQsImlkICsgXFx0YXUiXSxbMyw1LCJEIFxccGlfMiJdLFs0LDYsIlxccGlfMiArIEQgXFxwaV8yIl0sWzcsOCwiKFxccGlfMiArIGlkKSBcXGNpcmMgZGlzdHJpYl57LTF9IFxcY2lyYyAoaWQgXFx0aW1lcyBvdXQpIl0sWzcsMCwiaWQiXSxbOCwyLCJcXGxhbmdsZSAhICwgaWQgXFxyYW5nbGUgKyBpZCJdXQ==
-}
-- ⊤
-- {- ⁂ ⊤ ○
-- Diagram for identityˡ':
-- https://q.uiver.app/#q=WzAsOSxbMCwyLCIxIFxcdGltZXMgREIiXSxbMiwyLCIxIFxcdGltZXMgKEIgKyBEQikiXSxbNiwyLCIxIFxcdGltZXMgQiArIDEgXFx0aW1lcyBEQiJdLFswLDQsIkQoMSBcXHRpbWVzIEIpIl0sWzYsNCwiKDEgXFx0aW1lcyBCKSArIEQoMSBcXHRpbWVzIEIpIl0sWzAsNiwiREIiXSxbNiw2LCJCICsgREIiXSxbMCwwLCIxIFxcdGltZXMgREIiXSxbNiwwLCJCICsgMSBcXHRpbWVzIERCIl0sWzAsMSwiaWQgXFx0aW1lcyBvdXQiXSxbMSwyLCJkaXN0cmliXnstMX0iXSxbMCwzLCJcXHRhdSIsMl0sWzUsNiwib3V0IiwyXSxbMyw0LCJvdXQiLDJdLFsyLDQsImlkICsgXFx0YXUiXSxbMyw1LCJEIFxccGlfMiJdLFs0LDYsIlxccGlfMiArIEQgXFxwaV8yIl0sWzcsOCwiKFxccGlfMiArIGlkKSBcXGNpcmMgZGlzdHJpYl57LTF9IFxcY2lyYyAoaWQgXFx0aW1lcyBvdXQpIl0sWzcsMCwiaWQiXSxbOCwyLCJcXGxhbmdsZSAhICwgaWQgXFxyYW5nbGUgKyBpZCJdXQ==
-- -}
commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_ ,_] (CProduct C C) P₁ P₂)
→ τ P₂ ∘ ((fst fg) ⁂ extend (now ∘ (snd fg))) ≈ extend (now ∘ ((fst fg) ⁂ (snd fg))) ∘ τ P₁
commute' {(U , V)} {(W , X)} (f , g) = begin
@ -521,7 +545,7 @@ https://q.uiver.app/#q=WzAsOSxbMCwyLCIxIFxcdGltZXMgREIiXSxbMiwyLCIxIFxcdGltZXMgK
open Terminal (coalgebras (W × X))
alg' : F-Coalgebra ((W × X) +-)
alg' = record { A = U × D₀ V ; α = ((f ⁂ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) }
-- ⁂ ○ ˡ ʳ
strongMonad : StrongMonad monoidal
strongMonad = record { M = monad ; strength = strength }
```