Compare commits

...

5 commits

3 changed files with 199 additions and 131 deletions

3
.gitignore vendored
View file

@ -1,4 +1,5 @@
*.agdai
*.pdf
*.log
Everything.agda
Everything.agda
public/

View file

@ -20,7 +20,10 @@ open:
push: all
mv public/Everything.html public/index.html
scp -r public hy84coky@cip2a7.cip.cs.fau.de:.www/public
chmod +w public/Agda.css
mv public bsc-thesis
scp -r bsc-thesis hy84coky@cip2a7.cip.cs.fau.de:.www/
mv bsc-thesis public
Everything.agda:

View file

@ -1,6 +1,5 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Categories.Category
open import Categories.Monad
@ -10,10 +9,12 @@ open import Categories.Category.Extensive
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian
open import Categories.Category.Cartesian
open import Categories.Category.Cartesian.Bundle
open import Categories.Object.Terminal
open import Categories.Object.Initial
open import Categories.Object.Coproduct
open import Categories.Category.Construction.F-Coalgebras
open import Categories.Category.Construction.F-Algebras
open import Categories.Functor.Coalgebra
open import Categories.Functor
open import Categories.Functor.Algebra
@ -29,50 +30,59 @@ import Categories.Morphism.Reasoning as MR
## Summary
This file introduces the delay monad ***D***
- [ ] *Proposition 1* Characterization of the delay monad ***D***
- [ ] *Proposition 2* ***D*** is commutative
## Code
```agda
module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o e) where
```
<!--
```agda
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
open BinaryProducts products
CC : CartesianCategory o e
CC = record { U = C ; cartesian = (ExtensiveDistributiveCategory.cartesian ED) }
open import Categories.Object.NaturalNumbers.Parametrized CC
open import Categories.Object.NaturalNumbers.Properties.F-Algebras using (PNNO⇒Initial₂; PNNO-Algebra)
open M C
open MR C
open Equiv
open HomReasoning
open CoLambek
open F-Coalgebra-Morphism renaming (f to u)
open F-Coalgebra
```
### *Proposition 1*: Characterization of the delay monad ***D***
-->
The Delay monad is usually described by existence of final coalgebras for the functor `(X + -)` where `X` is some arbitrary object.
This functor trivially sends objects `Y` to `X + Y` and functions `f` to `id + f`.
```agda
delayF : Obj → Endofunctor C
delayF Y = record
{ F₀ = Y +_
; F₁ = idC +₁_
; identity = CC.coproduct.unique id-comm-sym id-comm-sym
; homomorphism = ⟺ (+₁∘+₁ ○ +₁-cong₂ identity² refl)
; F-resp-≈ = +₁-cong₂ refl
}
record DelayM : Set (o ⊔ ⊔ e) where
field
algebras : ∀ (A : Obj) → Terminal (F-Coalgebras (delayF A))
module D A = Functor (delayF A)
coalgebras : ∀ (A : Obj) → Terminal (F-Coalgebras (A +-))
```
These are all the fields this record needs!
Of course this doesn't tell us very much, so our goal will be to extract a monad from this definition.
Conventionally the delay monad is described via functions `now` and `later` where the former lifts a value into a computation and the latter postpones a computation by one time unit.
We can now define these functions by bisecting the isomorphism `out : DX ≅ X + DX` which we get by Lambek's lemma. (Here `DX` is the element of the final coalgebra for `X`)
```agda
module _ (X : Obj) where
open Terminal (algebras X) using (; !)
open Terminal (coalgebras X) using (; !; !-unique)
open F-Coalgebra renaming (A to DX)
D₀ = DX
out-≅ : DX ≅ X + DX
out-≅ = colambek {F = delayF X} (algebras X)
out-≅ = colambek {F = X +- } (coalgebras X)
-- note: out-≅.from ≡ .α
open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public
@ -83,150 +93,204 @@ module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o
later : DX ⇒ DX
later = out⁻¹ ∘ i₂
-- TODO inline
unitlaw : out ∘ now ≈ i₁
unitlaw = cancelˡ (_≅_.isoʳ out-≅)
```
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use our terminal coalgebras to get a *coiteration operator* `coit`:
TODO add diagram
```agda
module _ {Y : Obj} where
coit : Y ⇒ X + Y → Y ⇒ DX
coit f = F-Coalgebra-Morphism.f (! {A = record { A = Y ; α = f }})
coit f = u (! {A = record { A = Y ; α = f }})
coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f
coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})
coit-commutes f = commutes (! {A = record { A = Y ; α = f }})
```
If we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y + \_)`-functor defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras.
TODO add diagram
```agda
module _ ( : ParametrizedNNO) where
open ParametrizedNNO
iso : X × N ≅ X + X × N
iso = Lambek.lambek (record { ⊥ = PNNO-Algebra CC coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ CC coproducts X })
ι : X × N ⇒ DX
ι = u (! {A = record { A = X × N ; α = _≅_.from iso }})
```
With these definitions at hand, we can now indeed construct a monad (in extension form) as the triple `(F₀, unit, extend)`.
`F₀` corresponds to `D₀` of course and `unit` is `now`, the tricky part is kleisli lifting aka. `extend`.
TODO
```agda
monad : Monad C
monad = Kleisli⇒Monad C (record
{ F₀ = D₀
; unit = λ {X} → now X
; extend = extend
; identityʳ = λ {X} {Y} {f} → begin
extend f ∘ now X ≈⟨ (insertˡ (_≅_.isoˡ (out-≅ Y))) ⟩∘⟨refl ⟩
(out⁻¹ Y ∘ out Y ∘ extend f) ∘ now X ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩
(out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ out X) ∘ now X ≈⟨ pullʳ (pullʳ (unitlaw X)) ⟩
out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
out⁻¹ Y ∘ out Y ∘ f ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) ⟩
f ∎
; identityˡ = λ {X} → Terminal.-id (algebras X) (record { f = extend (now X) ; commutes = begin
out X ∘ extend (now X) ≈⟨ pullˡ ((F-Coalgebra-Morphism.commutes (Terminal.! (algebras X) {A = alg (now X)}))) ⟩
((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ F-Coalgebra.α (alg (now X))) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
(idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))
∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out X ∘ (now X)) , i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ (unitlaw X)) ○ inject₁) refl ⟩∘⟨refl ⟩
(idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₁
, (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
[ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ refl assoc) ⟩∘⟨refl ⟩
[ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ (elimˡ +-η) ⟩∘⟨refl ⟩
(idC +₁ extend (now X)) ∘ out X ∎ })
; assoc = {! !}
; sym-assoc = {! !}
; extend-≈ = λ {X} {Y} {f} {g} eq → begin
F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (Terminal.!-unique (algebras Y) (record { f = (F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ; commutes = begin
F-Coalgebra.α (Terminal. (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
F-Coalgebra.α (Terminal. (algebras Y)) ∘ F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ≈⟨ F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y)) ⟩
Functor.F₁ (delayF Y) (F-Coalgebra-Morphism.f (Terminal.! (algebras Y))) ∘ F-Coalgebra.α (alg g) ≈˘⟨ (Functor.F-resp-≈ (delayF Y) identityʳ) ⟩∘⟨ (αf≈αg eq) ⟩
Functor.F₁ (delayF Y) (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ∘ idC) ∘ F-Coalgebra.α (alg f) ∎ })) ⟩∘⟨refl ⟩
(F-Coalgebra-Morphism.f (Terminal.! (algebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩
extend g ∎
; identityʳ = identityʳ'
; identityˡ = identityˡ'
; assoc = assoc'
; sym-assoc = sym assoc'
; extend-≈ = extend-≈'
})
where
alg' : ∀ {X Y} → F-Coalgebra (delayF Y)
alg' {X} {Y} = record { A = D₀ X ; α = i₂ }
open Terminal
module _ {X Y : Obj} (f : X ⇒ D₀ Y) where
open Terminal (algebras Y) using (!; -id)
alg : F-Coalgebra (delayF Y)
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] } -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm)
alg : F-Coalgebra (Y +-)
alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] }
extend : D₀ X ⇒ D₀ Y
extend = F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₁ {B = D₀ Y}
!∘i₂ : F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₂ ≈ idC
!∘i₂ = -id (F-Coalgebras (delayF Y) [ ! ∘ record { f = i₂ ; commutes = inject₂ } ] )
extend = u (! (coalgebras Y) {A = alg}) ∘ i₁ {B = D₀ Y}
!∘i₂ : u (! (coalgebras Y) {A = alg}) ∘ i₂ ≈ idC
!∘i₂ = -id (coalgebras Y) (F-Coalgebras (Y +-) [ ! (coalgebras Y) ∘ record { f = i₂ ; commutes = inject₂ } ] )
extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X
extendlaw = begin
out Y ∘ extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! {A = alg})) ⟩
((idC +₁ (F-Coalgebra-Morphism.f !)) ∘ F-Coalgebra.α alg) ∘ coproduct.i₁ ≈⟨ pullʳ inject₁ ⟩
(idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
[ [ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₁
, (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl ⟩
[ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₂ ] ∘ (out Y ∘ f)
, (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → F-Coalgebra.α (alg f) ≈ F-Coalgebra.α (alg g)
out Y ∘ extend ≈⟨ pullˡ (commutes (! (coalgebras Y) {A = alg})) ⟩
((idC +₁ (u (! (coalgebras Y)))) ∘ α alg) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
(idC +₁ (u (! (coalgebras Y)))) ∘ [ [ i₁ , i₂ ∘ i₂ ]
∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ (idC +₁ (u (! (coalgebras Y)))) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩
[ [ (idC +₁ (u (! (coalgebras Y)))) ∘ i₁
, (idC +₁ (u (! (coalgebras Y)))) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
refl) ⟩∘⟨refl ⟩
[ [ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₂ ] ∘ (out Y ∘ f)
, (i₂ ∘ (u (! (coalgebras Y)))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂
(elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η))
assoc) ⟩∘⟨refl ⟩
[ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎
extend-unique : (g : D₀ X ⇒ D₀ Y) → (out Y ∘ g ≈ [ out Y ∘ f , i₂ ∘ g ] ∘ out X) → extend ≈ g
extend-unique g g-commutes = begin
extend ≈⟨ (!-unique (coalgebras Y) (record { f = [ g , idC ] ; commutes = begin
out Y ∘ [ g , idC ] ≈⟨ ∘[] ⟩
[ out Y ∘ g , out Y ∘ idC ] ≈⟨ []-cong₂ g-commutes identityʳ ⟩
[ [ out Y ∘ f , i₂ ∘ g ] ∘ out X , out Y ] ≈˘⟨ []-cong₂
(([]-cong₂
(([]-cong₂ refl identityʳ) ⟩∘⟨refl ○ (elimˡ +-η))
refl)
⟩∘⟨refl)
refl ⟩
[ [ [ i₁ , i₂ ∘ idC ] ∘ (out Y ∘ f)
, i₂ ∘ g ] ∘ out X
, out Y ] ≈˘⟨ []-cong₂
(([]-cong₂
(([]-cong₂ identityʳ (pullʳ inject₂)) ⟩∘⟨refl)
refl)
⟩∘⟨refl)
refl
[ [ [ i₁ ∘ idC
, (i₂ ∘ [ g , idC ]) ∘ i₂ ] ∘ (out Y ∘ f)
, i₂ ∘ g ] ∘ out X
, out Y ] ≈˘⟨ []-cong₂
(([]-cong₂
(([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl)
(pullʳ inject₁))
⟩∘⟨refl)
(elimˡ (Functor.identity (Y +-)))
[ [ [ (idC +₁ [ g , idC ]) ∘ i₁
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (i₂ ∘ [ g , idC ]) ∘ i₁ ] ∘ out X
, (idC +₁ idC) ∘ out Y ] ≈˘⟨ []-cong₂
(([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl)
((+₁-cong₂ identity² inject₂) ⟩∘⟨refl) ⟩
[ [ (idC +₁ [ g , idC ]) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f)
, (idC +₁ [ g , idC ]) ∘ i₂ ∘ i₁ ] ∘ out X
, (idC ∘ idC +₁ [ g , idC ] ∘ i₂) ∘ out Y ] ≈˘⟨ []-cong₂ (pullˡ ∘[]) (pullˡ +₁∘+₁) ⟩
[ (idC +₁ [ g , idC ]) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X
, (idC +₁ [ g , idC ]) ∘ (idC +₁ i₂) ∘ out Y ] ≈˘⟨ ∘[] ⟩
(idC +₁ [ g , idC ]) ∘ α alg ∎ })) ⟩∘⟨refl ⟩
[ g , idC ] ∘ i₁ ≈⟨ inject₁ ⟩
g ∎
αf≈αg : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → α (alg f) ≈ α (alg g)
αf≈αg {X} {Y} {f} {g} eq = []-cong₂ ([]-cong₂ (refl⟩∘⟨ refl⟩∘⟨ eq) refl ⟩∘⟨refl) refl
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (delayF Y)) (alg f) (alg g)
alg-f≈alg-g : ∀ {X Y} {f g : X ⇒ D₀ Y} → f ≈ g → M._≅_ (F-Coalgebras (Y +-)) (alg f) (alg g)
alg-f≈alg-g {X} {Y} {f} {g} eq = record
{ from = record { f = idC ; commutes = begin
F-Coalgebra.α (alg g) ∘ idC ≈⟨ identityʳ ⟩
F-Coalgebra.α (alg g) ≈⟨ ⟺ (αf≈αg eq) ⟩
F-Coalgebra.α (alg f) ≈˘⟨ elimˡ (Functor.identity (delayF Y)) ⟩
Functor.F₁ (delayF Y) idC ∘ F-Coalgebra.α (alg f) ∎ }
α (alg g) ∘ idC ≈⟨ identityʳ ⟩
α (alg g) ≈⟨ ⟺ (αf≈αg eq) ⟩
α (alg f) ≈˘⟨ elimˡ identity
(idC +₁ idC) ∘ α (alg f) ∎ }
; to = record { f = idC ; commutes = begin
F-Coalgebra.α (alg f) ∘ idC ≈⟨ identityʳ ⟩
F-Coalgebra.α (alg f) ≈⟨ αf≈αg eq ⟩
F-Coalgebra.α (alg g) ≈˘⟨ elimˡ (Functor.identity (delayF Y)) ⟩
Functor.F₁ (delayF Y) idC ∘ F-Coalgebra.α (alg g) ∎ }
α (alg f) ∘ idC ≈⟨ identityʳ ⟩
α (alg f) ≈⟨ αf≈αg eq ⟩
α (alg g) ≈˘⟨ elimˡ identity
(idC +₁ idC) ∘ α (alg g) ∎ }
; iso = record
{ isoˡ = identity²
; isoʳ = identity²
}
}
```
where open Functor (Y +-) using (identity)
### Old definitions:
identityʳ' : ∀ {X} {Y} {f} → extend f ∘ now X ≈ f
identityʳ' {X} {Y} {f} = begin
extend f ∘ now X ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩∘⟨refl ⟩
(out⁻¹ Y ∘ out Y ∘ extend f) ∘ now X ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩
(out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ out X) ∘ now X ≈⟨ pullʳ (pullʳ (unitlaw X)) ⟩
out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
out⁻¹ Y ∘ out Y ∘ f ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) ⟩
f ∎
```agda
record DelayMonad : Set (o ⊔ ⊔ e) where
field
D₀ : Obj → Obj
identityˡ' : ∀ {X} → extend (now X) ≈ idC
identityˡ' {X} = Terminal.-id (coalgebras X) (record { f = extend (now X) ; commutes = begin
out X ∘ extend (now X) ≈⟨ pullˡ ((commutes (! (coalgebras X) {A = alg (now X)}))) ⟩
((idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ α (alg (now X))) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩
(idC +₁ (u (! (coalgebras X) {A = alg (now X)})))
∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out X ∘ (now X)) , i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ unitlaw X) ○ inject₁) refl ⟩∘⟨refl ⟩
(idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ (idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₁
, (idC +₁ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ []-cong₂ +₁∘i₁ (pullˡ +₁∘i₂) ⟩∘⟨refl ⟩
[ i₁ ∘ idC , (i₂ ∘ (u (! (coalgebras X) {A = alg (now X)}))) ∘ i₁ ] ∘ out X ≈⟨ []-cong₂ refl assoc ⟩∘⟨refl ⟩
[ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩
([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ elimˡ +-η ⟩∘⟨refl ⟩
(idC +₁ extend (now X)) ∘ out X ∎ })
field
now : ∀ {X} → X ⇒ D₀ X
later : ∀ {X} → D₀ X ⇒ D₀ X
isIso : ∀ {X} → IsIso ([ now {X} , later {X} ])
out : ∀ {X} → D₀ X ⇒ X + D₀ X
out {X} = IsIso.inv (isIso {X})
field
coit : ∀ {X Y} → Y ⇒ X + Y → Y ⇒ D₀ X
coit-law : ∀ {X Y} {f : Y ⇒ X + Y} → out ∘ (coit f) ≈ (idC +₁ (coit f)) ∘ f
field
_* : ∀ {X Y} → X ⇒ D₀ Y → D₀ X ⇒ D₀ Y
*-law : ∀ {X Y} {f : X ⇒ D₀ Y} → out ∘ (f *) ≈ [ out ∘ f , i₂ ∘ (f *) ] ∘ out
*-unique : ∀ {X Y} (f : X ⇒ D₀ Y) (h : D₀ X ⇒ D₀ Y) → h ≈ f *
*-resp-≈ : ∀ {X Y} {f h : X ⇒ D₀ Y} → f ≈ h → f * ≈ h *
unitLaw : ∀ {X} → out {X} ∘ now {X} ≈ i₁
unitLaw = begin
out ∘ now ≈⟨ refl⟩∘⟨ sym inject₁ ⟩
out ∘ [ now , later ] ∘ i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) ⟩
i₁ ∎
toMonad : KleisliTriple C
toMonad = record
{ F₀ = D₀
; unit = now
; extend = _*
; identityʳ = λ {X} {Y} {k} → begin
k * ∘ now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl ⟩
(([ now , later ] ∘ out) ∘ k *) ∘ now ≈⟨ pullʳ *-law ⟩∘⟨refl ⟩
([ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitLaw) ⟩
[ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
[ now , later ] ∘ out ∘ k ≈⟨ cancelˡ (IsIso.isoʳ isIso) ⟩
k ∎
; identityˡ = λ {X} → sym (*-unique now idC)
; assoc = λ {X} {Y} {Z} {f} {g} → sym (*-unique ((g *) ∘ f) ((g *) ∘ (f *)))
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
; extend-≈ = *-resp-≈
}
assoc' : ∀ {X} {Y} {Z} {g} {h} → extend (extend h ∘ g) ≈ extend h ∘ extend g
assoc' {X} {Y} {Z} {g} {h} = extend-unique (extend h ∘ g) (extend h ∘ extend g) (begin
out Z ∘ extend h ∘ extend g ≈⟨ pullˡ (extendlaw h) ⟩
([ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y) ∘ extend g ≈⟨ pullʳ (extendlaw g) ⟩
[ out Z ∘ h , i₂ ∘ extend h ] ∘ [ out Y ∘ g , i₂ ∘ extend g ] ∘ out X ≈⟨ pullˡ ∘[] ⟩
[ [ out Z ∘ h , i₂ ∘ extend h ] ∘ out Y ∘ g
, [ out Z ∘ h , i₂ ∘ extend h ] ∘ i₂ ∘ extend g ] ∘ out X ≈⟨ []-cong₂ (pullˡ (⟺ (extendlaw h))) (pullˡ inject₂) ⟩∘⟨refl ⟩
[ (out Z ∘ extend h) ∘ g , (i₂ ∘ extend h) ∘ extend g ] ∘ out X ≈⟨ ([]-cong₂ assoc assoc) ⟩∘⟨refl ⟩
[ out Z ∘ extend h ∘ g , i₂ ∘ extend h ∘ extend g ] ∘ out X ∎)
extend-≈' : ∀ {X} {Y} {f g : X ⇒ D₀ Y} → f ≈ g → extend f ≈ extend g
extend-≈' {X} {Y} {f} {g} eq = begin
u (! (coalgebras Y) {A = alg f }) ∘ i₁ {B = D₀ Y} ≈⟨ (!-unique (coalgebras Y) (record { f = (u (! (coalgebras Y) {A = alg g }) ∘ idC) ; commutes = begin
α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
α ( (coalgebras Y)) ∘ u (! (coalgebras Y)) ≈⟨ commutes (! (coalgebras Y)) ⟩
(idC +₁ u (! (coalgebras Y))) ∘ α (alg g) ≈˘⟨ Functor.F-resp-≈ (Y +-) identityʳ ⟩∘⟨ αf≈αg eq ⟩
(idC +₁ u (! (coalgebras Y)) ∘ idC) ∘ α (alg f) ∎ }))
⟩∘⟨refl ⟩
(u (! (coalgebras Y) {A = alg g }) ∘ idC) ∘ i₁ {B = D₀ Y} ≈⟨ identityʳ ⟩∘⟨refl ⟩
extend g ∎
```
### Definition 30: Search-Algebras
TODO
### Proposition 31 : the category of uniform-iteration algebras coincides with the category of search-algebras
### Proposition 31 : the category of uniform-iteration coalgebras coincides with the category of search-coalgebras
TODO