mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Compare commits
2 commits
9fa6f8e0ed
...
ce6b129c38
Author | SHA1 | Date | |
---|---|---|---|
ce6b129c38 | |||
be2d12cbf1 |
4 changed files with 49 additions and 37 deletions
38
README.md
38
README.md
|
@ -4,27 +4,6 @@ Here I am formalizing some notions of this paper [https://arxiv.org/pdf/2102.118
|
||||||
The whole project consists of literate agda files, where I add my documentation as markdown.
|
The whole project consists of literate agda files, where I add my documentation as markdown.
|
||||||
A (mostly up to date) version can be found here: https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/
|
A (mostly up to date) version can be found here: https://wwwcip.cs.fau.de/~hy84coky/bsc-thesis/
|
||||||
|
|
||||||
## Running the project
|
|
||||||
TODO
|
|
||||||
|
|
||||||
## Contributions to *agda-categories*
|
|
||||||
This project uses the awesome category theory library for agda ([agda-categories](https://github.com/agda/agda-categories)), it is already very extensive, but some notions needed here are missing, so I contribute them to the library.
|
|
||||||
So far the contributions are:
|
|
||||||
1. Kleisli triples [[merged](https://github.com/agda/agda-categories/pull/381)]
|
|
||||||
- `Categories.Monad.Construction.Kleisli`
|
|
||||||
2. Distributive categories (and the relation to extensivity) [[merged](https://github.com/agda/agda-categories/pull/383)]
|
|
||||||
- `Categories.Category.Distributive`
|
|
||||||
- `Categories.Category.Extensive.Bundle`
|
|
||||||
- `Categories.Category.Extensive.Properties.Distributive`
|
|
||||||
3. Parametrized (or stable) natural numbers objects [[merged](https://github.com/agda/agda-categories/pull/394)]
|
|
||||||
- `Categories.Object.NaturalNumbers.Parametrized`
|
|
||||||
- `Categories.Object.NaturalNumbers.Properties.F-Algebra`
|
|
||||||
- `Categories.Object.NaturalNumbers.Properties.Parametrized`
|
|
||||||
4. Commutative monad [TODO]
|
|
||||||
|
|
||||||
## TODO
|
|
||||||
TODOs are found inside the literate agda files!
|
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
The project requires a new version of agda-categories (newer than some package managers ship), so the easiest way to use this project is via the provided nix flake, which fetches my fork of agda-categories that is guaranteed to work with this project.
|
The project requires a new version of agda-categories (newer than some package managers ship), so the easiest way to use this project is via the provided nix flake, which fetches my fork of agda-categories that is guaranteed to work with this project.
|
||||||
|
|
||||||
|
@ -39,3 +18,20 @@ There is also a Makefile for compiling every module and generating the html docu
|
||||||
```
|
```
|
||||||
make
|
make
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Contributions to *agda-categories*
|
||||||
|
This project uses the awesome category theory library for agda ([agda-categories](https://github.com/agda/agda-categories)), it is already very extensive, but some notions needed here are missing, so I contribute them to the library.
|
||||||
|
So far the contributions are:
|
||||||
|
1. Kleisli triples [[merged](https://github.com/agda/agda-categories/pull/381)]
|
||||||
|
- `Categories.Monad.Construction.Kleisli`
|
||||||
|
2. Distributive categories (and the relation to extensivity) [[merged](https://github.com/agda/agda-categories/pull/383)]
|
||||||
|
- `Categories.Category.Distributive`
|
||||||
|
- `Categories.Category.Extensive.Bundle`
|
||||||
|
- `Categories.Category.Extensive.Properties.Distributive`
|
||||||
|
3. Parametrized (or stable) natural numbers objects [[merged](https://github.com/agda/agda-categories/pull/394)]
|
||||||
|
- `Categories.Object.NaturalNumbers.Parametrized`
|
||||||
|
- `Categories.Object.NaturalNumbers.Properties.F-Algebra`
|
||||||
|
- `Categories.Object.NaturalNumbers.Properties.Parametrized`
|
||||||
|
4. Commutative monad [[merged](https://github.com/agda/agda-categories/pull/404)]
|
||||||
|
- `Categories.Monad.Commutative`
|
||||||
|
- `Categories.Monad.Strong.Properties`
|
||||||
|
|
|
@ -127,3 +127,19 @@ numpages = {16}
|
||||||
biburl = {https://dblp.org/rec/journals/corr/abs-2102-11828.bib},
|
biburl = {https://dblp.org/rec/journals/corr/abs-2102-11828.bib},
|
||||||
bibsource = {dblp computer science bibliography, https://dblp.org}
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@article{while,
|
||||||
|
author = {Sergey Goncharov and
|
||||||
|
Lutz Schr{\"{o}}der and
|
||||||
|
Christoph Rauch},
|
||||||
|
title = {(Co-)Algebraic Foundations for Effect Handling and Iteration},
|
||||||
|
journal = {CoRR},
|
||||||
|
volume = {abs/1405.0854},
|
||||||
|
year = {2014},
|
||||||
|
url = {http://arxiv.org/abs/1405.0854},
|
||||||
|
eprinttype = {arXiv},
|
||||||
|
eprint = {1405.0854},
|
||||||
|
timestamp = {Mon, 13 Aug 2018 16:47:19 +0200},
|
||||||
|
biburl = {https://dblp.org/rec/journals/corr/GoncharovSR14.bib},
|
||||||
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
||||||
|
}
|
|
@ -29,8 +29,8 @@ module reverse where
|
||||||
fin-colist : Colist ℕ
|
fin-colist : Colist ℕ
|
||||||
fin-colist = 1 ∷ ♯ (2 ∷ ♯ (3 ∷ ♯ []))
|
fin-colist = 1 ∷ ♯ (2 ∷ ♯ (3 ∷ ♯ []))
|
||||||
|
|
||||||
inf-colist : Colist ℕ
|
ones : Colist ℕ
|
||||||
inf-colist = 1 ∷ ♯ inf-colist
|
ones = 1 ∷ ♯ ones
|
||||||
|
|
||||||
-- run reverse fin-colist for 5 steps
|
-- run reverse fin-colist for 5 steps
|
||||||
-- run reverse inf-colist for 1000 steps
|
-- run reverse ones for 1000 steps
|
|
@ -170,7 +170,7 @@ The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complet
|
||||||
\end{block}
|
\end{block}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Monads~\cite{elgotmonad}}
|
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Monads~\cite{elgotmonad}~\cite{while}}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A monad $\mathbf{T}$ is an Elgot monad if it has an iteration operator $(f : X \rightarrow T(Y + X))^\dagger : X \rightarrow TY$ satisfying:
|
A monad $\mathbf{T}$ is an Elgot monad if it has an iteration operator $(f : X \rightarrow T(Y + X))^\dagger : X \rightarrow TY$ satisfying:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
|
Loading…
Reference in a new issue