Compare commits

...

3 commits

Author SHA1 Message Date
bf4af5ad9c
Working on small lemma 2023-10-25 18:19:09 +02:00
7e7ff5268f
minor 2023-10-25 18:18:58 +02:00
9dfd4145a2
Finished strength of K 2023-10-25 18:18:30 +02:00
6 changed files with 344 additions and 63 deletions

View file

@ -5,6 +5,11 @@ open import Level
open import Category.Instance.AmbientCategory open import Category.Instance.AmbientCategory
open import Categories.Functor open import Categories.Functor
open import Categories.Monad.Relative renaming (Monad to RMonad) open import Categories.Monad.Relative renaming (Monad to RMonad)
open import Categories.Object.Initial
open import Categories.Object.Terminal
open import Categories.Object.NaturalNumbers.Properties.F-Algebras
open import Categories.Functor.Algebra
open import Categories.Functor.Coalgebra
``` ```
--> -->
@ -24,12 +29,65 @@ module Algebra.Elgot.Properties {o e} (ambient : Ambient o e) where
module _ {D : DelayM} (algebra : Guarded-Elgot-Algebra (DelayM.functor D)) where module _ {D : DelayM} (algebra : Guarded-Elgot-Algebra (DelayM.functor D)) where
open DelayM D open DelayM D
open Functor functor renaming (F₁ to D₁) open Functor functor renaming (F₁ to D₁)
open RMonad kleisli open RMonad kleisli using (extend)
open Guarded-Elgot-Algebra algebra open Guarded-Elgot-Algebra algebra
open MR C
open M C
commutes : α ∘ extend ια ∘ (D₁ π₁) commutes : α ∘ extend ια ∘ (D₁ π₁)
commutes = {! !} commutes = {! !}
where where
α∘ι : αι ≈ π₁ α∘ι : αι ≈ π₁
α∘ι = {! !} α∘ι = begin
αι ≈⟨ sym (IsInitial.!-unique isInitial (record { f = αι ; commutes = begin
(αι) ∘ [ ⟨ idC , z ∘ _ ⟩ , idC ⁂ s ] ≈⟨ ∘[] ⟩
[ (αι) ∘ ⟨ idC , z ∘ _ ⟩ , (αι) ∘ (idC ⁂ s) ] ≈⟨ []-cong₂ helper₁ (pullʳ helper₂) ⟩
[ idC , αι ] ≈˘⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
[ idC , idC ] ∘ [ i₁ , i₂ ∘ αι ] ∎ })) ⟩
F-Algebra-Morphism.f (IsInitial.! isInitial) ≈⟨ IsInitial.!-unique isInitial (record { f = π₁ ; commutes = begin
π₁ ∘ [ ⟨ idC , z ∘ _ ⟩ , idC ⁂ s ] ≈⟨ ∘[] ⟩
[ π₁ ∘ ⟨ idC , z ∘ _ ⟩ , π₁ ∘ (idC ⁂ s) ] ≈⟨ []-cong₂ project₁ π₁∘⁂ ⟩
[ idC , idC ∘ π₁ ] ≈˘⟨ []-cong₂ inject₁ (pullˡ inject₂) ⟩
[ [ idC , idC ] ∘ i₁ , [ idC , idC ] ∘ i₂ ∘ π₁ ] ≈˘⟨ ∘[] ⟩
[ idC , idC ] ∘ [ i₁ , i₂ ∘ π₁ ] ∎ }) ⟩
π₁ ∎
where
isInitial = PNNO⇒Initial₂ cartesianCategory coproducts A
helper₁ = begin
(αι) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ pullʳ (sym (Terminal.!-unique (coalgebras A) (record { f = ι ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ; commutes = begin
out ∘ ι ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ pullˡ ι-commutes ⟩
((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈˘⟨ refl⟩∘⟨ inject₁ ⟩
((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ _≅_.to nno-iso ∘ i₁ ≈⟨ pullʳ (cancelˡ (_≅_.isoʳ nno-iso)) ⟩
(idC +₁ ι) ∘ i₁ ≈⟨ +₁∘i₁ ○ identityʳ ⟩
i₁ ≈˘⟨ +₁∘i₁ ○ identityʳ ⟩
(idC +₁ ι ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩) ∘ i₁ ∎ }))) ⟩
α ∘ F-Coalgebra-Morphism.f (Terminal.! (coalgebras A)) ≈⟨ refl⟩∘⟨ (Terminal.!-unique (coalgebras A) (record { f = now ; commutes = begin
out ∘ now ≈⟨ unitlaw ⟩
i₁ ≈˘⟨ +₁∘i₁ ○ identityʳ ⟩
(idC +₁ now) ∘ i₁ ∎ })) ⟩
α ∘ now ≈⟨ {! !} ⟩ -- TODO elgot⇒search
idC ∎
helper₂ = begin
ι ∘ (idC ⁂ s) ≈⟨ sym (Terminal.!-unique (coalgebras A) (record { f = ι ∘ (idC ⁂ s) ; commutes = begin
out ∘ ι ∘ (idC ⁂ s) ≈⟨ pullˡ ι-commutes ⟩
((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ (idC ⁂ s) ≈⟨ {! !} ⟩
((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ _≅_.to nno-iso ∘ i₂ ≈⟨ {! !} ⟩
(idC +₁ ι) ∘ i₂ ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
((idC +₁ ι) ∘ (idC +₁ (idC ⁂ s))) ∘ _≅_.from nno-iso ≈⟨ {! !} ⟩
(idC +₁ ι ∘ (idC ⁂ s)) ∘ _≅_.from nno-iso ∎ })) ⟩
-- TODO remove last part, iota is the final morphism...
F-Coalgebra-Morphism.f (Terminal.! (coalgebras A)) ≈⟨ Terminal.!-unique (coalgebras A) (record { f = ι ; commutes = begin
out ∘ ι ≈⟨ ι-commutes ⟩
(idC +₁ ι) ∘ _≅_.from nno-iso ∎ }) ⟩
ι
```
- For every X, a final coalgebra Y → X + H Y is a free H-guarded algebra over X.
```agda
-- final-to-guarded : ∀ {A} → ?η
``` ```

View file

@ -14,6 +14,9 @@ open import Categories.Category.Cartesian.Monoidal
open import Categories.Category.Cartesian.SymmetricMonoidal using () renaming (symmetric to symm) open import Categories.Category.Cartesian.SymmetricMonoidal using () renaming (symmetric to symm)
open import Categories.Category.Monoidal open import Categories.Category.Monoidal
open import Categories.Category.Monoidal.Symmetric open import Categories.Category.Monoidal.Symmetric
open import Categories.Monad
open import Categories.Monad.Construction.Kleisli
open import Categories.Monad.Relative renaming (Monad to RMonad)
open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Object.NaturalNumbers.Parametrized using (ParametrizedNNO) open import Categories.Object.NaturalNumbers.Parametrized using (ParametrizedNNO)
open import Categories.Object.Exponential using (Exponential) open import Categories.Object.Exponential using (Exponential)
@ -85,7 +88,6 @@ module Category.Instance.AmbientCategory where
[ (idC ⁂ i₁) ∘ swap , (idC ⁂ i₂) ∘ swap ] ∘ distributeʳ⁻¹ ≈⟨ sym (pullˡ []∘+₁) ⟩ [ (idC ⁂ i₁) ∘ swap , (idC ⁂ i₂) ∘ swap ] ∘ distributeʳ⁻¹ ≈⟨ sym (pullˡ []∘+₁) ⟩
distributeˡ ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ ∎) distributeˡ ∘ (swap +₁ swap) ∘ distributeʳ⁻¹ ∎)
dstr-law₁ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₁) ≈ i₁ dstr-law₁ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₁) ≈ i₁
dstr-law₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ)) dstr-law₁ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoˡ))
dstr-law₂ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₂) ≈ i₂ dstr-law₂ : ∀ {A B C} → distributeˡ⁻¹ {A} {B} {C} ∘ (idC ⁂ i₂) ≈ i₂
@ -94,6 +96,12 @@ module Category.Instance.AmbientCategory where
dstr-law₃ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ)) dstr-law₃ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ))
dstr-law₄ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₂ ⁂ idC) ≈ i₂ dstr-law₄ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₂ ⁂ idC) ≈ i₂
dstr-law₄ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ)) dstr-law₄ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ))
dstr-law₅ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂
dstr-law₅ = Iso⇒Epi C (IsIso.iso isIsoˡ) ((π₂ +₁ π₂) ∘ distributeˡ⁻¹) π₂ (begin
(((π₂ +₁ π₂) ∘ distributeˡ⁻¹) ∘ distributeˡ) ≈⟨ cancelʳ (IsIso.isoˡ isIsoˡ) ⟩
(π₂ +₁ π₂) ≈˘⟨ []-cong₂ project₂ project₂ ⟩
[ π₂ ∘ _ , π₂ ∘ _ ] ≈˘⟨ ∘[] ⟩
π₂ ∘ distributeˡ ∎)
distribute₂ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂ distribute₂ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂
distribute₂ = sym (begin distribute₂ = sym (begin
π₂ ≈⟨ introʳ (IsIso.isoʳ isIsoˡ) ⟩ π₂ ≈⟨ introʳ (IsIso.isoʳ isIsoˡ) ⟩
@ -101,6 +109,22 @@ module Category.Instance.AmbientCategory where
[ π₂ ∘ ((idC ⁂ i₁)) , π₂ ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩ [ π₂ ∘ ((idC ⁂ i₁)) , π₂ ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎) (π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎)
distributeˡ⁻¹-assoc : ∀ {A B C D : Obj} → distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc ≈ (_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹ {A × B} {C} {D}
distributeˡ⁻¹-assoc {A} {B} {U} {D} = Iso⇒Epi C (IsIso.iso isIsoˡ) (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ((_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹) (begin
(distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ [ idC ⁂ i₁ , idC ⁂ i₂ ] ≈⟨ ∘[] ⟩
[ (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ (idC ⁂ i₁) , (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ _≅_.to ×-assoc) ∘ (idC ⁂ i₂) ] ≈⟨ []-cong₂ (pullʳ (pullʳ ⟨⟩∘)) (pullʳ (pullʳ ⟨⟩∘)) ⟩
[ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₁) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₂) , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩) ⟩
[ distributeˡ⁻¹ ∘ ⟨ idC ∘ (π₁ ∘ π₁) ∘ (idC ⁂ i₁) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ ⟨ idC ∘ (π₁ ∘ π₁) ∘ (idC ⁂ i₂) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl)) (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl)) ⟩
[ distributeˡ⁻¹ ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₁) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₁) ⟩ , distributeˡ⁻¹ ∘ ⟨ (π₁ ∘ π₁) ∘ (idC ⁂ i₂) , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ (idC ⁂ i₂) ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘))) (refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘)) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ idC ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ i₁) , π₂ ∘ (idC ⁂ i₁) ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ idC ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ i₂) , π₂ ∘ (idC ⁂ i₂) ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))) (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ idC ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ idC ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl)) (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl)) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ idC ∘ π₂ ∘ π₁ , i₁ ∘ π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ idC ∘ π₂ ∘ π₁ , i₂ ∘ π₂ ⟩ ⟩ ] ≈˘⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩))) (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩))) ⟩
[ distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ (idC ⁂ i₁) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ (idC ⁂ i₂) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ dstr-law₁))) (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ dstr-law₂))) ⟩
[ distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , i₁ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , i₂ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈˘⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩) ⟩
[ distributeˡ⁻¹ ∘ (idC ⁂ i₁) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ , distributeˡ⁻¹ ∘ (idC ⁂ i₂) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ] ≈⟨ []-cong₂ (pullˡ dstr-law₁) (pullˡ dstr-law₂) ⟩
(_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ≈˘⟨ cancelʳ (IsIso.isoˡ isIsoˡ) ⟩
((_≅_.to ×-assoc +₁ _≅_.to ×-assoc) ∘ distributeˡ⁻¹) ∘ distributeˡ ∎)
module M = M' module M = M'
module MR = MR' module MR = MR'
@ -127,18 +151,8 @@ module Category.Instance.AmbientCategory where
[ ((g +₁ h) ⁂ f) ∘ (i₁ ⁂ idC) , ((g +₁ h) ⁂ f) ∘ (i₂ ⁂ idC) ] ≈˘⟨ ∘[] ⟩ [ ((g +₁ h) ⁂ f) ∘ (i₁ ⁂ idC) , ((g +₁ h) ⁂ f) ∘ (i₂ ⁂ idC) ] ≈˘⟨ ∘[] ⟩
(((g +₁ h) ⁂ f) ∘ distributeʳ) ≈˘⟨ cancelˡ (IsIso.isoʳ isIsoʳ) ⟩∘⟨refl ⟩ (((g +₁ h) ⁂ f) ∘ distributeʳ) ≈˘⟨ cancelˡ (IsIso.isoʳ isIsoʳ) ⟩∘⟨refl ⟩
(distributeʳ ∘ distributeʳ⁻¹ ∘ ((g +₁ h) ⁂ f)) ∘ distributeʳ ∎)) (distributeʳ ∘ distributeʳ⁻¹ ∘ ((g +₁ h) ⁂ f)) ∘ distributeʳ ∎))
dstldstr : ∀ {X Y U V} → (distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹ ≈ [ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ (distributeˡ⁻¹ {X + Y} {U} {V})
dstldstr = Iso⇒Epi C (IsIso.iso isIsoˡ) ((distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) ([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) (sym (begin
(([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹) ∘ distributeˡ⁻¹) ∘ distributeˡ) ≈⟨ pullʳ (cancelʳ (IsIso.isoˡ isIsoˡ)) ⟩
([ i₁ +₁ i₁ , i₂ +₁ i₂ ] ∘ (distributeʳ⁻¹ +₁ distributeʳ⁻¹)) ≈⟨ []∘+₁ ⟩
[ (i₁ +₁ i₁) ∘ distributeʳ⁻¹ , (i₂ +₁ i₂) ∘ distributeʳ⁻¹ ] ≈⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
{! !} ≈˘⟨ {! !} ⟩
[ ((distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) ∘ (idC ⁂ i₁) , ((distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) ∘ (idC ⁂ i₂) ] ≈˘⟨ ∘[] ⟩
(((distributeˡ⁻¹ +₁ distributeˡ⁻¹) ∘ distributeʳ⁻¹) ∘ distributeˡ) ∎))
-- TODO replace with use of Iso⇒Epi etc.
iso-epi-from : ∀ {X Y} → (iso : X ≅ Y) → Epi (_≅_.from iso) iso-epi-from : ∀ {X Y} → (iso : X ≅ Y) → Epi (_≅_.from iso)
iso-epi-from iso = λ f g eq → begin iso-epi-from iso = λ f g eq → begin
f ≈⟨ introʳ (_≅_.isoʳ iso) ⟩ f ≈⟨ introʳ (_≅_.isoʳ iso) ⟩
@ -151,4 +165,29 @@ module Category.Instance.AmbientCategory where
(f ∘ M'._≅_.to iso ∘ M'._≅_.from iso) ≈⟨ pullˡ eq ⟩ (f ∘ M'._≅_.to iso ∘ M'._≅_.from iso) ≈⟨ pullˡ eq ⟩
((g ∘ M'._≅_.to iso) ∘ M'._≅_.from iso) ≈⟨ cancelʳ (_≅_.isoˡ iso) ⟩ ((g ∘ M'._≅_.to iso) ∘ M'._≅_.from iso) ≈⟨ cancelʳ (_≅_.isoˡ iso) ⟩
g ∎ g ∎
-- TODO should be in agda-categories
Kleisli⇒Monad⇒Kleisli : ∀ (K : KleisliTriple C) {X Y} (f : X ⇒ RMonad.F₀ K Y) → RMonad.extend (Monad⇒Kleisli C (Kleisli⇒Monad C K)) f ≈ RMonad.extend K f
Kleisli⇒Monad⇒Kleisli K f = begin
extend idC ∘ extend (unit ∘ f) ≈⟨ sym kleisli.assoc ⟩
extend (extend idC ∘ unit ∘ f) ≈⟨ extend-≈ (pullˡ kleisli.identityʳ) ⟩
extend (idC ∘ f) ≈⟨ extend-≈ (identityˡ) ⟩
extend f ∎
where
module kleisli = RMonad K
open kleisli using (unit; extend; extend-≈)
Monad⇒Kleisli⇒Monad : ∀ (M : Monad C) {X Y} (f : X ⇒ Monad.F.₀ M Y) → Monad.F.₁ (Kleisli⇒Monad C (Monad⇒Kleisli C M)) f ≈ Monad.F.₁ M f
Monad⇒Kleisli⇒Monad M f = begin
μ.η _ ∘ F.₁ (η.η _ ∘ f) ≈⟨ refl⟩∘⟨ F.homomorphism ⟩
μ.η _ ∘ F.₁ (η.η _) ∘ F.₁ f ≈⟨ cancelˡ monad.identityˡ ⟩
F.₁ f ∎
where
module monad = Monad M
open monad using (F; η; μ)
F₁⇒extend : ∀ (M : Monad C) {X Y} (f : X ⇒ Y) → RMonad.extend (Monad⇒Kleisli C M) (RMonad.unit (Monad⇒Kleisli C M) ∘ f) ≈ Monad.F.₁ M f
F₁⇒extend M f = begin
μ.η _ ∘ F.₁ (η.η _ ∘ f) ≈⟨ refl⟩∘⟨ F.homomorphism ⟩
μ.η _ ∘ F.₁ (η.η _) ∘ F.₁ f ≈⟨ cancelˡ m-identityˡ ⟩
F.₁ f ∎
where open Monad M using (F; η; μ) renaming (identityˡ to m-identityˡ)
``` ```

View file

@ -105,8 +105,14 @@ At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y
nno-iso : X × N ≅ X + X × N nno-iso : X × N ≅ X + X × N
nno-iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts X }) nno-iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts X })
ι-coalg : F-Coalgebra-Morphism (record { A = X × N ; α = _≅_.from nno-iso }) (record { A = DX ; α = out })
ι-coalg = ! {A = record { A = X × N ; α = _≅_.from nno-iso }}
ι : X × N ⇒ DX ι : X × N ⇒ DX
ι = u (! {A = record { A = X × N ; α = _≅_.from nno-iso }}) ι = u ι-coalg
ι-commutes : out ∘ ι ≈ (idC +₁ ι) ∘ _≅_.from nno-iso
ι-commutes = commutes ι-coalg
``` ```
## Delay is a monad ## Delay is a monad

View file

@ -30,15 +30,6 @@ module Monad.Instance.Delay.Commutative {o e} (ambient : Ambient o e) (D
open import Categories.Morphism.Properties C open import Categories.Morphism.Properties C
open Terminal using (!; !-unique; ) open Terminal using (!; !-unique; )
-- TODO should be in agda-categories
Kleisli⇒Monad⇒Kleisli : ∀ (K : KleisliTriple C) {X Y} (f : X ⇒ RMonad.F₀ K Y) → RMonad.extend (Monad⇒Kleisli C (Kleisli⇒Monad C K)) f ≈ RMonad.extend K f
Kleisli⇒Monad⇒Kleisli K {X} {Y} f = begin
extend idC ∘ extend (unit ∘ f) ≈⟨ sym k-assoc ⟩
extend (extend idC ∘ unit ∘ f) ≈⟨ extend-≈ (pullˡ k-identityʳ) ⟩
extend (idC ∘ f) ≈⟨ extend-≈ (identityˡ) ⟩
extend f ∎
where open RMonad K using (unit; extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ)
open DelayM D open DelayM D
open import Monad.Instance.Delay.Strong ambient D open import Monad.Instance.Delay.Strong ambient D
open Functor functor using () renaming (F₁ to D₁; identity to D-identity; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈) open Functor functor using () renaming (F₁ to D₁; identity to D-identity; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈)
@ -192,7 +183,7 @@ module Monad.Instance.Delay.Commutative {o e} (ambient : Ambient o e) (D
fixpoint-eq : ∀ {f : D₀ X × D₀ Y ⇒ D₀ (X × Y)} → f ≈ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ f ] ] ∘ w → f ≈ extend [ now , f ] ∘ g fixpoint-eq : ∀ {f : D₀ X × D₀ Y ⇒ D₀ (X × Y)} → f ≈ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ f ] ] ∘ w → f ≈ extend [ now , f ] ∘ g
fixpoint-eq {f} fix = begin fixpoint-eq {f} fix = begin
f ≈⟨ fix ⟩ f ≈⟨ fix ⟩
out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ f ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ refl (refl⟩∘⟨ ([]-cong₂ refl (pullʳ inject₂))) ⟩∘⟨refl ⟩ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , ▷ ∘ f ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ refl (refl⟩∘⟨ ([]-cong₂ refl (pullʳ inject₂))) ⟩∘⟨refl ⟩
out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , (▷ ∘ [ now , f ]) ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ refl (sym ∘[] ○ refl⟩∘⟨ []-cong₂ (elimˡ (extend-≈ inject₁ ○ k-identityˡ)) (pullˡ k-identityʳ)) ⟩∘⟨refl ⟩ out⁻¹ ∘ [ idC +₁ σ , i₂ ∘ [ τ , (▷ ∘ [ now , f ]) ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ refl (sym ∘[] ○ refl⟩∘⟨ []-cong₂ (elimˡ (extend-≈ inject₁ ○ k-identityˡ)) (pullˡ k-identityʳ)) ⟩∘⟨refl ⟩
out⁻¹ ∘ [ idC +₁ σ , [ i₂ ∘ extend ([ now , f ] ∘ i₁) ∘ τ , i₂ ∘ extend (▷ ∘ [ now , f ]) ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ ([]-cong₂ (sym identityʳ) (refl⟩∘⟨ (elimˡ ((extend-≈ inject₁) ○ k-identityˡ)))) ([]-cong₂ (pullʳ (pullˡ ((sym k-assoc) ○ extend-≈ (pullˡ k-identityʳ)))) (pullʳ (pullˡ (▷∘extendʳ [ now , f ])))) ⟩∘⟨refl ⟩ out⁻¹ ∘ [ idC +₁ σ , [ i₂ ∘ extend ([ now , f ] ∘ i₁) ∘ τ , i₂ ∘ extend (▷ ∘ [ now , f ]) ∘ now ∘ i₂ ] ] ∘ w ≈˘⟨ refl⟩∘⟨ []-cong₂ ([]-cong₂ (sym identityʳ) (refl⟩∘⟨ (elimˡ ((extend-≈ inject₁) ○ k-identityˡ)))) ([]-cong₂ (pullʳ (pullˡ ((sym k-assoc) ○ extend-≈ (pullˡ k-identityʳ)))) (pullʳ (pullˡ (▷∘extendʳ [ now , f ])))) ⟩∘⟨refl ⟩

View file

@ -0,0 +1,30 @@
<!--
```agda
open import Level
open import Category.Instance.AmbientCategory
open import Categories.Functor
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
```
-->
```agda
module Monad.Instance.Delay.Lemmas {o e} (ambient : Ambient o e) where
open Ambient ambient
open import Monad.Instance.Delay ambient
open import Monad.Instance.Delay.Strong ambient
open import Monad.Instance.Delay.Commutative ambient
open M C
```
# Helper Lemmas concerning the Delay Monad
```agda
module _ (D : DelayM) where
open DelayM D
module D = Functor functor
open RMonad kleisli using (extend)
Lemma47 : ⟨ D.₁ π₁ , D.₁ π₂ ⟩ SectionOf {! !}
Lemma47 = {! !}
```

View file

@ -10,6 +10,8 @@ open import Categories.Adjoint
open import Categories.Adjoint.Properties open import Categories.Adjoint.Properties
open import Categories.Monad open import Categories.Monad
open import Categories.Monad.Strong open import Categories.Monad.Strong
open import Categories.Monad.Relative renaming (Monad to RMonad)
open import Categories.Monad.Construction.Kleisli
open import Category.Instance.AmbientCategory using (Ambient) open import Category.Instance.AmbientCategory using (Ambient)
open import Categories.NaturalTransformation open import Categories.NaturalTransformation
open import Categories.Object.Terminal open import Categories.Object.Terminal
@ -35,10 +37,12 @@ In this file I explore the monad ***K*** and its properties:
module Monad.Instance.K {o e} (ambient : Ambient o e) where module Monad.Instance.K {o e} (ambient : Ambient o e) where
open Ambient ambient open Ambient ambient
open import Category.Construction.UniformIterationAlgebras ambient open import Category.Construction.UniformIterationAlgebras ambient
open import Algebra.UniformIterationAlgebra open import Algebra.UniformIterationAlgebra ambient
open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra) open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra)
open Equiv open Equiv
open MR C
open M C
open HomReasoning open HomReasoning
``` ```
@ -48,13 +52,13 @@ module Monad.Instance.K {o e} (ambient : Ambient o e) where
```agda ```agda
record MonadK : Set (suc o ⊔ suc ⊔ suc e) where record MonadK : Set (suc o ⊔ suc ⊔ suc e) where
field field
algebras : ∀ X → FreeUniformIterationAlgebra X freealgebras : ∀ X → FreeUniformIterationAlgebra X
freeF : Functor C Uniform-Iteration-Algebras freeF : Functor C Uniform-Iteration-Algebras
freeF = FO⇒Functor uniformForgetfulF algebras freeF = FO⇒Functor uniformForgetfulF freealgebras
adjoint : freeF ⊣ uniformForgetfulF adjoint : freeF ⊣ uniformForgetfulF
adjoint = FO⇒LAdj uniformForgetfulF algebras adjoint = FO⇒LAdj uniformForgetfulF freealgebras
K : Monad C K : Monad C
K = adjoint⇒monad adjoint K = adjoint⇒monad adjoint
@ -65,13 +69,18 @@ module Monad.Instance.K {o e} (ambient : Ambient o e) where
```agda ```agda
record MonadKStrong : Set (suc o ⊔ suc ⊔ suc e) where record MonadKStrong : Set (suc o ⊔ suc ⊔ suc e) where
field field
algebras : ∀ X → FreeUniformIterationAlgebra X freealgebras : ∀ X → FreeUniformIterationAlgebra X
stable : ∀ X → IsStableFreeUniformIterationAlgebra (algebras X) stable : ∀ X → IsStableFreeUniformIterationAlgebra (freealgebras X)
algebras : ∀ (X : Obj) → Uniform-Iteration-Algebra
algebras X = FreeObject.FX (freealgebras X)
K : Monad C K : Monad C
K = MonadK.K (record { algebras = algebras }) K = MonadK.K (record { freealgebras = freealgebras })
open Monad K using (F) open Monad K using (F; μ) renaming (identityʳ to m-identityʳ)
module kleisli = RMonad (Monad⇒Kleisli C K)
open kleisli using (extend)
open Functor F using () renaming (F₀ to K₀; F₁ to K₁) open Functor F using () renaming (F₀ to K₀; F₁ to K₁)
KStrong : StrongMonad {C = C} monoidal KStrong : StrongMonad {C = C} monoidal
@ -79,47 +88,195 @@ module Monad.Instance.K {o e} (ambient : Ambient o e) where
{ M = K { M = K
; strength = record ; strength = record
{ strengthen = ntHelper (record { η = τ ; commute = commute' }) { strengthen = ntHelper (record { η = τ ; commute = commute' })
; identityˡ = λ {X} → begin ; identityˡ = identityˡ'
K₁ π₂ ∘ τ _ ≈⟨ refl ⟩ ; η-comm = λ {A} {B} → τ-η (A , B)
Uniform-Iteration-Algebra-Morphism.h ((algebras (Terminal. terminal × X) FreeObject.*) (FreeObject.η (algebras X) ∘ π₂)) ∘ τ _ ≈⟨ {! !} ⟩ ; μ-η-comm = μ-η-comm'
{! !} ≈⟨ {! !} ⟩ ; strength-assoc = strength-assoc'
{! !} ≈⟨ {! !} ⟩
π₂ ∎
; η-comm = λ {A} {B} → begin τ _ ∘ (idC ⁂ η (A , B) B) ≈⟨ τ-η (A , B) ⟩ η (A , B) (A × B) ∎
; μ-η-comm = λ {A} {B} → {! !}
; strength-assoc = λ {A} {B} {D} → begin
K₁ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∘ τ _ ≈⟨ {! !} ⟩
τ _ ∘ (idC ⁂ τ _) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∎
} }
} }
where where
open import Agda.Builtin.Sigma open import Agda.Builtin.Sigma
open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving) open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving; ♯-unique)
open Uniform-Iteration-Algebra using (#-Uniformity; #-Fixpoint; #-resp-≈)
η = λ Z → FreeObject.η (freealgebras Z)
_♯ = λ {A X Y} f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f
_# = λ {A} {X} f → Uniform-Iteration-Algebra._# (algebras A) {X = X} f
module _ (P : Category.Obj (CProduct C C)) where module _ (P : Category.Obj (CProduct C C)) where
η = λ Z → FreeObject.η (algebras Z) private
[_,_,_]♯ = λ {A} X Y f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} Y f X = fst P
Y = snd P
X = fst P
Y = snd P
τ : X × K₀ Y ⇒ K₀ (X × Y) τ : X × K₀ Y ⇒ K₀ (X × Y)
τ = [ Y , FreeObject.FX (algebras (X × Y)) , η (X × Y) ] τ = η (X × Y) ♯
τ-η : τ ∘ (idC ⁂ η Y) ≈ η (X × Y) τ-η : τ ∘ (idC ⁂ η Y) ≈ η (X × Y)
τ-η = sym (♯-law (stable Y) (η (X × Y))) τ-η = sym (♯-law (stable Y) (η (X × Y)))
[_,_]# : ∀ (A : Uniform-Iteration-Algebra ambient) {X} → (X ⇒ ((Uniform-Iteration-Algebra.A A) + X)) → (X ⇒ Uniform-Iteration-Algebra.A A) τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ h #) ≈ ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
[ A , f ]# = Uniform-Iteration-Algebra._# A f τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X × Y)) h
τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ [ FreeObject.FX (algebras Y) , h ]#) ≈ [ FreeObject.FX (algebras (X × Y)) , (τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ]# K₁η : ∀ {X Y} (f : X ⇒ Y) → K₁ f ∘ η X ≈ η Y ∘ f
τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X , Y) (X × Y)) h K₁η {X} {Y} f = begin
K₁ f ∘ η X ≈⟨ (sym (F₁⇒extend K f)) ⟩∘⟨refl ⟩
extend (η Y ∘ f) ∘ η X ≈⟨ kleisli.identityʳ ⟩
η Y ∘ f ∎
μ-η-comm' : ∀ {A B} → μ.η _ ∘ K₁ (τ _) ∘ τ (A , K₀ B) ≈ τ _ ∘ (idC ⁂ μ.η _)
μ-η-comm' {A} {B} = begin
μ.η _ ∘ K₁ (τ _) ∘ τ _ ≈⟨ ♯-unique (stable (K₀ B)) (τ (A , B)) (μ.η _ ∘ K₁ (τ _) ∘ τ _) comm₁ comm₂ ⟩
_ ♯) ≈⟨ sym (♯-unique (stable (K₀ B)) (τ (A , B)) (τ _ ∘ (idC ⁂ μ.η _)) (sym (cancelʳ (⁂∘⁂ ○ ⁂-cong₂ identity² m-identityʳ ○ ⟨⟩-unique id-comm id-comm))) comm₃) ⟩
τ _ ∘ (idC ⁂ μ.η _) ∎
where
comm₁ : τ (A , B) ≈ (μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ η _)
comm₁ = sym (begin
(μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ η _) ≈⟨ pullʳ (pullʳ (τ-η _)) ⟩
μ.η _ ∘ K₁ (τ _) ∘ η _ ≈⟨ refl⟩∘⟨ (K₁η (τ (A , B))) ⟩
μ.η _ ∘ η _ ∘ τ _ ≈⟨ cancelˡ m-identityʳ ⟩
τ _ ∎)
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K₀ (K₀ B) + Z) → (μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K₁ (τ (A , B)) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
comm₂ {Z} h = begin
(μ.η _ ∘ K₁ (τ _) ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (pullʳ (τ-comm h)) ⟩
μ.η _ ∘ K₁ (τ _) ∘ (((τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ≈⟨ refl⟩∘⟨ (Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η _ ∘ τ _))) ⟩
μ.η _ ∘ ((K₁ (τ _) +₁ idC) ∘ (τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC) ⟩
((μ.η _ +₁ idC) ∘ (K₁ (τ _) +₁ idC) ∘ (τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
((μ.η _ ∘ K₁ (τ _) +₁ idC ∘ idC) ∘ (τ (A , K₀ B) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ +₁∘+₁) ⟩
(((μ.η _ ∘ K₁ (τ _)) ∘ τ _ +₁ (idC ∘ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) ((+₁-cong₂ assoc (cancelʳ identity²)) ⟩∘⟨refl) ⟩
((μ.η _ ∘ K₁ (τ (A , B)) ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
comm₃ : ∀ {Z : Obj} (h : Z ⇒ K₀ (K₀ B) + Z) → (τ _ ∘ (idC ⁂ μ.η _)) ∘ (idC ⁂ h #) ≈ ((τ _ ∘ (idC ⁂ μ.η _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
comm₃ {Z} h = begin
_ ∘ (idC ⁂ μ.η _)) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⁂∘⁂ ⟩
τ _ ∘ (idC ∘ idC ⁂ μ.η _ ∘ h #) ≈⟨ refl⟩∘⟨ (⁂-cong₂ identity² (Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC))) ⟩
τ _ ∘ (idC ⁂ ((μ.η _ +₁ idC) ∘ h) #) ≈⟨ τ-comm ((μ.η B +₁ idC) ∘ h) ⟩
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (μ.η B +₁ idC) ∘ h)) # ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (refl⟩∘⟨ (⁂-cong₂ (sym identity²) refl ○ sym ⁂∘⁂))) ⟩
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (μ.η B +₁ idC)) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (refl⟩∘⟨ (pullˡ (sym (distribute₁ idC (μ.η B) idC)))) ⟩
((τ _ +₁ idC) ∘ ((idC ⁂ μ.η B +₁ idC ⁂ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) (pullˡ (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm))))) ⟩
(((τ _ ∘ (idC ⁂ μ.η B) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras _) assoc ⟩
((τ _ ∘ (idC ⁂ μ.η _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
module assoc {A} {B} {C} = _≅_ (×-assoc {A} {B} {C})
strength-assoc' : ∀ {X Y Z} → K₁ assoc.to ∘ τ (X × Y , Z) ≈ τ (X , Y × Z) ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to
strength-assoc' {X} {Y} {Z} = begin
K₁ assoc.to ∘ τ _ ≈⟨ ♯-unique (stable _) (η (X × Y × Z) ∘ assoc.to) (K₁ assoc.to ∘ τ _) (sym (pullʳ (τ-η _) ○ K₁η _)) comm₁ ⟩
((η (X × Y × Z) ∘ assoc.to) ♯) ≈⟨ sym (♯-unique (stable _) (η (X × Y × Z) ∘ assoc.to) (τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) comm₂ comm₃) ⟩
τ _ ∘ (idC ⁂ τ _) ∘ assoc.to ∎
where
comm₁ : ∀ {A : Obj} (h : A ⇒ K₀ Z + A) → (K₁ assoc.to ∘ τ _) ∘ (idC ⁂ h #) ≈ ((K₁ assoc.to ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
comm₁ {A} h = begin
(K₁ assoc.to ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (τ-comm h) ⟩
K₁ assoc.to ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) _) ⟩
((K₁ assoc.to +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ #-resp-≈ (algebras _) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((K₁ assoc.to ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
comm₂ : η (X × Y × Z) ∘ assoc.to ≈ (τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ η _)
comm₂ = sym (begin
_ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ η _) ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl ⟩
_ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (idC ⁂ η _) ≈⟨ pullʳ ⟨⟩∘ ⟩
τ _ ∘ ⟨ (idC ∘ π₁ ∘ π₁) ∘ (idC ⁂ η _) , (τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (idC ⁂ η _) ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl ○ pullʳ π₁∘⁂) (pullʳ ⟨⟩∘)) ⟩
τ _ ∘ ⟨ π₁ ∘ idC ∘ π₁ , τ _ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ η _) , π₂ ∘ (idC ⁂ η _) ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂))) ⟩
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , η _ ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (refl⟩∘⟨ ((⟨⟩-cong₂ (sym identityˡ) refl) ○ sym ⁂∘⟨⟩))) ⟩
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ (idC ⁂ η _) ∘ ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (pullˡ (τ-η (Y , Z)))) ⟩
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , η _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩) ⟩
τ _ ∘ (idC ⁂ η _) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ pullˡ (τ-η _) ⟩
η _ ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ idC ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) refl) ⟩
η (X × Y × Z) ∘ assoc.to ∎)
comm₃ : ∀ {A : Obj} (h : A ⇒ K₀ Z + A) → (τ _ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ h #) ≈ ((τ _ ∘ (idC ⁂ τ _) ∘ assoc.to +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
comm₃ {A} h = begin
_ ∘ (idC ⁂ τ _) ∘ assoc.to) ∘ (idC ⁂ h #) ≈⟨ (refl⟩∘⟨ ⁂∘⟨⟩) ⟩∘⟨refl ⟩
_ ∘ ⟨ idC ∘ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⟨⟩∘ ⟩
τ _ ∘ ⟨ (idC ∘ π₁ ∘ π₁) ∘ (idC ⁂ h #) , (τ _ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩) ∘ (idC ⁂ h #) ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (identityˡ ⟩∘⟨refl ○ pullʳ π₁∘⁂) (pullʳ ⟨⟩∘)) ⟩
τ _ ∘ ⟨ π₁ ∘ idC ∘ π₁ , τ _ ∘ ⟨ (π₂ ∘ π₁) ∘ (idC ⁂ h #) , π₂ ∘ (idC ⁂ h #) ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)) ⟩
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ π₂ ∘ idC ∘ π₁ , h # ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ (⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ) ○ sym identityˡ) refl))) ⟩
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ ⟨ idC ∘ π₂ ∘ π₁ , h # ∘ π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ (sym ⁂∘⟨⟩)) ⟩
τ _ ∘ ⟨ π₁ ∘ π₁ , τ _ ∘ (idC ⁂ h #) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ (τ-comm h))) ⟩
τ _ ∘ ⟨ idC ∘ π₁ ∘ π₁ , (((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ refl⟩∘⟨ (sym ⁂∘⟨⟩) ⟩
τ _ ∘ (idC ⁂ ((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ assoc.to ≈⟨ pullˡ (τ-comm _) ⟩
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) # ∘ assoc.to ≈⟨ sym (#-Uniformity (algebras _) (begin
(idC +₁ assoc.to) ∘ (τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
(idC ∘ τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to +₁ assoc.to ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
(τ _ ∘ (idC ⁂ τ (Y , Z)) ∘ assoc.to +₁ idC ∘ assoc.to) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈˘⟨ (+₁∘+₁ ○ +₁-cong₂ assoc refl) ⟩∘⟨refl ⟩
((τ _ ∘ (idC ⁂ τ (Y , Z)) +₁ idC) ∘ (assoc.to +₁ assoc.to)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullʳ (pullˡ (sym distributeˡ⁻¹-assoc)) ⟩
(τ _ ∘ (idC ⁂ τ (Y , Z)) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assoc.to) ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ assoc²' ⟩
_ ∘ (idC ⁂ τ _) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assoc.to ∘ (idC ⁂ h) ≈˘⟨ (+₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm))) ⟩∘⟨refl ⟩
_ ∘ (idC ⁂ τ _) +₁ idC ∘ (idC ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ assoc.to ∘ (idC ⁂ h) ≈˘⟨ assoc ○ assoc ⟩
(((τ _ ∘ (idC ⁂ τ _) +₁ idC ∘ (idC ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ _≅_.to ×-assoc ∘ (idC ⁂ h) ≈˘⟨ pullˡ (pullˡ (pullˡ +₁∘+₁)) ⟩
_ +₁ idC) ∘ ((((idC ⁂ τ _) +₁ (idC ⁂ idC)) ∘ distributeˡ⁻¹) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ ((distribute₁ idC (τ (Y , Z)) idC) ⟩∘⟨refl) ⟩∘⟨refl ⟩
(τ _ +₁ idC) ∘ ((distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC))) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ (assoc ○ assoc ○ refl⟩∘⟨ sym-assoc) ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ((idC ⁂ (τ (Y , Z) +₁ idC)) ∘ (idC ⁂ distributeˡ⁻¹)) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ identity² refl) ⟩∘⟨refl ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ assoc.to ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ (sym (⟨⟩-unique id-comm id-comm)) refl ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ assoc.to ∘ ((idC ⁂ idC) ⁂ h) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ assocˡ∘⁂ ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ (idC ⁂ h)) ∘ assoc.to ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ((idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ (idC ⁂ h))) ∘ assoc.to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂∘⁂ ⟩∘⟨refl ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ∘ idC ⁂ ((τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹) ∘ (idC ⁂ h)) ∘ assoc.to ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ((⁂-cong₂ identity² assoc) ⟩∘⟨refl) ○ sym-assoc) ○ sym-assoc ⟩
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (τ (Y , Z) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) ∘ assoc.to ∎)) ⟩
((τ _ ∘ (idC ⁂ τ _) ∘ assoc.to +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_,_] (CProduct C C) P₁ P₂) commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_,_] (CProduct C C) P₁ P₂)
→ τ P₂ ∘ ((fst fg) ⁂ K₁ (snd fg)) ≈ K₁ ((fst fg) ⁂ (snd fg)) ∘ τ P₁ → τ P₂ ∘ ((fst fg) ⁂ K₁ (snd fg)) ≈ K₁ ((fst fg) ⁂ (snd fg)) ∘ τ P₁
commute' {(U , V)} {(W , X)} (f , g) = begin commute' {(U , V)} {(W , X)} (f , g) = begin
τ _ ∘ (f ⁂ Uniform-Iteration-Algebra-Morphism.h ((algebras V FreeObject.*) (FreeObject.η (algebras X) ∘ g))) ≈⟨ {! !} ⟩ τ _ ∘ (f ⁂ K₁ g) ≈⟨ ♯-unique (stable V) (η (W × X) ∘ (f ⁂ g)) (τ _ ∘ (f ⁂ K₁ g)) comm₁ comm₂ ⟩
{! !} ≈⟨ {! !} ⟩ _ ∘ (f ⁂ g)) ♯ ≈⟨ sym (♯-unique (stable V) (η (W × X) ∘ (f ⁂ g)) (K₁ (f ⁂ g) ∘ τ _) comm₃ comm₄) ⟩
{! !} ≈⟨ {! !} ⟩ K₁ (f ⁂ g) ∘ τ _ ∎
Uniform-Iteration-Algebra-Morphism.h ((algebras (U × V) FreeObject.*) (FreeObject.η (algebras (W × X)) ∘ (f ⁂ g))) ∘ τ _ ∎ where
comm₁ : η (W × X) ∘ (f ⁂ g) ≈ (τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ η V)
comm₁ = sym (begin
(τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ η V) ≈⟨ pullʳ ⁂∘⁂ ⟩
τ (W , X) ∘ (f ∘ idC ⁂ K₁ g ∘ η V) ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm (K₁η g)) ⟩
τ (W , X) ∘ (idC ∘ f ⁂ η X ∘ g) ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂) ⟩
τ (W , X) ∘ (idC ⁂ η X) ∘ (f ⁂ g) ≈⟨ pullˡ (τ-η (W , X)) ⟩
η (W × X) ∘ (f ⁂ g) ∎)
comm₃ : η (W × X) ∘ (f ⁂ g) ≈ (K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ η V)
comm₃ = sym (begin
(K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ η V) ≈⟨ pullʳ (τ-η (U , V)) ⟩
K₁ (f ⁂ g) ∘ η (U × V) ≈⟨ K₁η (f ⁂ g) ⟩
η (W × X) ∘ (f ⁂ g) ∎)
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K₀ V + Z) → (τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ h #) ≈ ((τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
comm₂ {Z} h = begin
(τ (W , X) ∘ (f ⁂ K₁ g)) ∘ (idC ⁂ h #) ≈⟨ pullʳ ⁂∘⁂ ⟩
τ (W , X) ∘ (f ∘ idC ⁂ K₁ g ∘ (h #)) ≈⟨ refl⟩∘⟨ (⁂-cong₂ id-comm ((Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η X ∘ g))) ○ sym identityʳ)) ⟩
τ (W , X) ∘ (idC ∘ f ⁂ ((K₁ g +₁ idC) ∘ h) # ∘ idC) ≈⟨ refl⟩∘⟨ (sym ⁂∘⁂) ⟩
τ (W , X) ∘ (idC ⁂ ((K₁ g +₁ idC) ∘ h) #) ∘ (f ⁂ idC) ≈⟨ pullˡ (♯-preserving (stable _) (η _) ((K₁ g +₁ idC) ∘ h)) ⟩
((τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (K₁ g +₁ idC) ∘ h)) # ∘ (f ⁂ idC) ≈⟨ sym (#-Uniformity (algebras _) (begin
(idC +₁ f ⁂ idC) ∘ (τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
(idC ∘ τ (W , X) ∘ (f ⁂ K₁ g) +₁ (f ⁂ idC) ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
(τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC ∘ (f ⁂ idC)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl ⟩
((τ (W , X) +₁ idC) ∘ ((f ⁂ K₁ g) +₁ (f ⁂ idC))) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullʳ (pullˡ (distribute₁ f (K₁ g) idC)) ⟩
(τ (W , X) +₁ idC) ∘ (distributeˡ⁻¹ ∘ (f ⁂ (K₁ g +₁ idC))) ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identityʳ refl)) ⟩
(τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (f ⁂ (K₁ g +₁ idC) ∘ h) ≈˘⟨ pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identityˡ identityʳ)) ⟩
((τ (W , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (K₁ g +₁ idC) ∘ h)) ∘ (f ⁂ idC) ∎)) ⟩
((τ (W , X) ∘ (f ⁂ K₁ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
comm₄ : ∀ {Z : Obj} (h : Z ⇒ K₀ V + Z) → (K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ h #) ≈ ((K₁ (f ⁂ g) ∘ τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
comm₄ {Z} h = begin
(K₁ (f ⁂ g) ∘ τ (U , V)) ∘ (idC ⁂ (h #)) ≈⟨ pullʳ (τ-comm h) ⟩
K₁ (f ⁂ g) ∘ ((τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η (W × X) ∘ (f ⁂ g))) ⟩
((K₁ (f ⁂ g) +₁ idC) ∘ (τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras (W × X)) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((K₁ (f ⁂ g) ∘ τ (U , V) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
identityˡ' : ∀ {X : Obj} → K₁ π₂ ∘ τ _ ≈ π₂
identityˡ' {X} = begin
K₁ π₂ ∘ τ _ ≈⟨ ♯-unique (stable X) (η X ∘ π₂) (K₁ π₂ ∘ τ (Terminal. terminal , X)) comm₁ comm₂ ⟩
(η X ∘ π₂) ♯ ≈⟨ sym (♯-unique (stable X) (η X ∘ π₂) π₂ (sym π₂∘⁂) comm₃) ⟩
π₂ ∎
where
comm₁ : η X ∘ π₂ ≈ (K₁ π₂ ∘ τ (Terminal. terminal , X)) ∘ (idC ⁂ η X)
comm₁ = sym (begin
(K₁ π₂ ∘ τ (Terminal. terminal , X)) ∘ (idC ⁂ η X) ≈⟨ pullʳ (τ-η (Terminal. terminal , X)) ⟩
K₁ π₂ ∘ η (Terminal. terminal × X) ≈⟨ (sym (F₁⇒extend K π₂)) ⟩∘⟨refl ⟩
extend (η _ ∘ π₂) ∘ η _ ≈⟨ kleisli.identityʳ ⟩
η X ∘ π₂ ∎)
comm₂ : ∀ {Z : Obj} (h : Z ⇒ K₀ X + Z) → (K₁ π₂ ∘ τ (Terminal. terminal , X)) ∘ (idC ⁂ h # ) ≈ ((K₁ π₂ ∘ τ (Terminal. terminal , X) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
comm₂ {Z} h = begin
(K₁ π₂ ∘ τ _) ∘ (idC ⁂ h #) ≈⟨ pullʳ (♯-preserving (stable X) (η _) h) ⟩
K₁ π₂ ∘ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ Uniform-Iteration-Algebra-Morphism.preserves ((freealgebras (Terminal. terminal × X) FreeObject.*) (η X ∘ π₂)) ⟩
((K₁ π₂ +₁ idC) ∘ (τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ≈⟨ #-resp-≈ (algebras X) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
((K₁ π₂ ∘ τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
comm₃ : ∀ {Z : Obj} (h : Z ⇒ K₀ X + Z) → π₂ ∘ (idC ⁂ h #) ≈ ((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #
comm₃ {Z} h = begin
π₂ ∘ (idC ⁂ h #) ≈⟨ π₂∘⁂ ⟩
h # ∘ π₂ ≈⟨ sym (#-Uniformity (algebras X) (begin
(idC +₁ π₂) ∘ (π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ +₁∘+₁ ⟩
(idC ∘ π₂ +₁ π₂ ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ (+₁-cong₂ identityˡ identityʳ) ⟩∘⟨refl ⟩
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ dstr-law₅ ⟩
π₂ ∘ (idC ⁂ h) ≈⟨ project₂ ⟩
h ∘ π₂ ∎)) ⟩
((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ∎
``` ```