Compare commits

...

2 commits

Author SHA1 Message Date
de565d00c7
Started working on motivation 2023-10-31 17:11:38 +01:00
61573d159c
Work on commutativity 2023-10-31 14:16:47 +01:00
4 changed files with 94 additions and 17 deletions

3
.gitignore vendored
View file

@ -3,4 +3,5 @@
*.log *.log
Everything.agda Everything.agda
public/ public/
.direnv .direnv
.DS_Store

View file

@ -96,6 +96,7 @@ module Category.Instance.AmbientCategory where
dstr-law₃ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ)) dstr-law₃ = (refl⟩∘⟨ (sym inject₁)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ))
dstr-law₄ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₂ ⁂ idC) ≈ i₂ dstr-law₄ : ∀ {A B C} → distributeʳ⁻¹ {A} {B} {C} ∘ (i₂ ⁂ idC) ≈ i₂
dstr-law₄ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ)) dstr-law₄ = (refl⟩∘⟨ (sym inject₂)) ○ (cancelˡ (IsIso.isoˡ isIsoʳ))
-- TODO this is double...
dstr-law₅ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂ dstr-law₅ : ∀ {A B C} → (π₂ +₁ π₂) ∘ distributeˡ⁻¹ {A} {B} {C} ≈ π₂
dstr-law₅ = Iso⇒Epi C (IsIso.iso isIsoˡ) ((π₂ +₁ π₂) ∘ distributeˡ⁻¹) π₂ (begin dstr-law₅ = Iso⇒Epi C (IsIso.iso isIsoˡ) ((π₂ +₁ π₂) ∘ distributeˡ⁻¹) π₂ (begin
(((π₂ +₁ π₂) ∘ distributeˡ⁻¹) ∘ distributeˡ) ≈⟨ cancelʳ (IsIso.isoˡ isIsoˡ) ⟩ (((π₂ +₁ π₂) ∘ distributeˡ⁻¹) ∘ distributeˡ) ≈⟨ cancelʳ (IsIso.isoˡ isIsoˡ) ⟩

View file

@ -27,7 +27,7 @@ module Monad.Instance.K.Commutative {o e} (ambient : Ambient o e) (MK :
``` ```
# K is a commutative monad # K is a commutative monad
The proof is analogous to the ones for strength, this is the relevant diagram is: The proof is analogous to the ones for strength, the relevant diagram is:
<!-- https://q.uiver.app/#q=WzAsNyxbMCwxLCJLWCBcXHRpbWVzIEtZIl0sWzEsMCwiSyhLWCBcXHRpbWVzIFkpIl0sWzIsMCwiSyhLKFggXFx0aW1lcyBZKSkiXSxbMywxLCJLKFggXFx0aW1lcyBZKSJdLFsxLDIsIksoWCBcXHRpbWVzIEtZKSJdLFsyLDIsIksoSyhYIFxcdGltZXMgWSkpIl0sWzAsNCwiS1ggXFx0aW1lcyBZIl0sWzAsMSwiXFx0YXUiXSxbMSwyLCJLXFxoYXR7XFx0YXV9Il0sWzIsMywiXFxtdSJdLFswLDQsIlxcaGF0e1xcdGF1fSIsMl0sWzQsNSwiS1xcdGF1IiwyXSxbNSwzLCJcXG11IiwyXSxbNiwwLCJpZCBcXHRpbWVzIFxcZXRhIl0sWzYsMywiXFxoYXR7XFx0YXV9IiwwLHsiY3VydmUiOjV9XSxbMCwzLCJcXGhhdHtcXHRhdX1eXFwjIl1d --> <!-- https://q.uiver.app/#q=WzAsNyxbMCwxLCJLWCBcXHRpbWVzIEtZIl0sWzEsMCwiSyhLWCBcXHRpbWVzIFkpIl0sWzIsMCwiSyhLKFggXFx0aW1lcyBZKSkiXSxbMywxLCJLKFggXFx0aW1lcyBZKSJdLFsxLDIsIksoWCBcXHRpbWVzIEtZKSJdLFsyLDIsIksoSyhYIFxcdGltZXMgWSkpIl0sWzAsNCwiS1ggXFx0aW1lcyBZIl0sWzAsMSwiXFx0YXUiXSxbMSwyLCJLXFxoYXR7XFx0YXV9Il0sWzIsMywiXFxtdSJdLFswLDQsIlxcaGF0e1xcdGF1fSIsMl0sWzQsNSwiS1xcdGF1IiwyXSxbNSwzLCJcXG11IiwyXSxbNiwwLCJpZCBcXHRpbWVzIFxcZXRhIl0sWzYsMywiXFxoYXR7XFx0YXV9IiwwLHsiY3VydmUiOjV9XSxbMCwzLCJcXGhhdHtcXHRhdX1eXFwjIl1d -->
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNyxbMCwxLCJLWCBcXHRpbWVzIEtZIl0sWzEsMCwiSyhLWCBcXHRpbWVzIFkpIl0sWzIsMCwiSyhLKFggXFx0aW1lcyBZKSkiXSxbMywxLCJLKFggXFx0aW1lcyBZKSJdLFsxLDIsIksoWCBcXHRpbWVzIEtZKSJdLFsyLDIsIksoSyhYIFxcdGltZXMgWSkpIl0sWzAsNCwiS1ggXFx0aW1lcyBZIl0sWzAsMSwiXFx0YXUiXSxbMSwyLCJLXFxoYXR7XFx0YXV9Il0sWzIsMywiXFxtdSJdLFswLDQsIlxcaGF0e1xcdGF1fSIsMl0sWzQsNSwiS1xcdGF1IiwyXSxbNSwzLCJcXG11IiwyXSxbNiwwLCJpZCBcXHRpbWVzIFxcZXRhIl0sWzYsMywiXFxoYXR7XFx0YXV9IiwwLHsiY3VydmUiOjV9XSxbMCwzLCJcXGhhdHtcXHRhdX1eXFwjIl1d&embed" width="974" height="688" style="border-radius: 8px; border: none;"></iframe> <iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNyxbMCwxLCJLWCBcXHRpbWVzIEtZIl0sWzEsMCwiSyhLWCBcXHRpbWVzIFkpIl0sWzIsMCwiSyhLKFggXFx0aW1lcyBZKSkiXSxbMywxLCJLKFggXFx0aW1lcyBZKSJdLFsxLDIsIksoWCBcXHRpbWVzIEtZKSJdLFsyLDIsIksoSyhYIFxcdGltZXMgWSkpIl0sWzAsNCwiS1ggXFx0aW1lcyBZIl0sWzAsMSwiXFx0YXUiXSxbMSwyLCJLXFxoYXR7XFx0YXV9Il0sWzIsMywiXFxtdSJdLFswLDQsIlxcaGF0e1xcdGF1fSIsMl0sWzQsNSwiS1xcdGF1IiwyXSxbNSwzLCJcXG11IiwyXSxbNiwwLCJpZCBcXHRpbWVzIFxcZXRhIl0sWzYsMywiXFxoYXR7XFx0YXV9IiwwLHsiY3VydmUiOjV9XSxbMCwzLCJcXGhhdHtcXHRhdX1eXFwjIl1d&embed" width="974" height="688" style="border-radius: 8px; border: none;"></iframe>
@ -57,10 +57,13 @@ The proof is analogous to the ones for strength, this is the relevant diagram is
≈ ((K.₁ swap +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ swap ≈ ((K.₁ swap +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ swap
-} -}
σ-preserve {Z} h = {! !} σ-preserve {Z} h = {! !}
σ-preserve' : ∀ {X Y Z : Obj} (h : Z ⇒ K.₀ Y + Z) → σ (X , K.₀ Y) ∘ (idC ⁂ h #) ≈ ((σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
σ-preserve' {Z} h = {! !}
commutes' : ∀ {X Y : Obj} → μ.η _ ∘ K.₁ (σ _) ∘ τ (K.₀ X , Y) ≈ μ.η _ ∘ K.₁ (τ _) ∘ σ _ commutes' : ∀ {X Y : Obj} → μ.η _ ∘ K.₁ (σ _) ∘ τ (K.₀ X , Y) ≈ μ.η _ ∘ K.₁ (τ _) ∘ σ _
commutes' {X} {Y} = begin commutes' {X} {Y} = begin
μ.η _ ∘ K.₁ (σ _) ∘ τ _ ≈⟨ ♯-unique (stable _) (σ _) (μ.η (X × Y) ∘ K.₁ (σ _) ∘ τ _) comm₁ comm₂ ⟩ μ.η _ ∘ K.₁ (σ _) ∘ τ _ ≈⟨ ♯-unique (stable _) (σ _) (μ.η (X × Y) ∘ K.₁ (σ _) ∘ τ _) comm₁ comm₂ ⟩
(σ _) ♯ ≈⟨ sym (♯-unique (stable _) (σ _) (μ.η _ ∘ K.₁ (τ _) ∘ σ _) comm₃ comm₄) ⟩ (σ _) ♯ ≈⟨ sym (♯-unique (stable _) (σ _) (μ.η _ ∘ K.₁ (τ _) ∘ σ _) comm₃ comm₄) ⟩
{! !} ≈⟨ {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ σ _ ∎ μ.η _ ∘ K.₁ (τ _) ∘ σ _ ∎
where where
comm₁ : σ _ ≈ (μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ η _) comm₁ : σ _ ≈ (μ.η _ ∘ K.₁ (σ _) ∘ τ _) ∘ (idC ⁂ η _)
@ -94,25 +97,22 @@ The proof is analogous to the ones for strength, this is the relevant diagram is
comm₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# comm₄ : ∀ {Z : Obj} (h : Z ⇒ K.₀ Y + Z) → (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈ ((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))#
comm₄ {Z} h = begin comm₄ {Z} h = begin
(μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈⟨ {! !} ⟩ (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (idC ⁂ h #) ≈⟨ {! !} ⟩
μ.η (X × Y) ∘ K.₁ (τ _) ∘ K.₁ swap ∘ τ _ ∘ (h # ⁂ idC) ∘ swap ≈⟨ {! !} ⟩ (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ ((i₁ # ∘ idC) ⁂ h #) ≈˘⟨ {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ τ _ ∘ (h # ⁂ K.₁ idC) ∘ swap ≈⟨ {! !} ⟩ (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ (((i₁ #) ⁂ h #)) ≈˘⟨ refl⟩∘⟨ ⟨⟩-cong₂ (#-Uniformity (algebras _) helper₁) {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ K.₁ (h # ⁂ idC) ∘ τ _ ∘ swap ≈⟨ {! !} ⟩ (μ.η _ ∘ K.₁ (τ _) ∘ σ _) ∘ ⟨ ((π₁ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # , ((π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) # ⟩ ≈⟨ {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ (swap ∘ (h # ⁂ idC)) ∘ τ _ ∘ swap ≈⟨ {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ ((idC ⁂ h #) ∘ swap) ∘ τ _ ∘ swap ≈⟨ {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ (K.₁ (idC ⁂ h #) ∘ K.₁ swap) ∘ τ _ ∘ swap ≈⟨ {! !} ⟩
μ.η _ ∘ (K.₁ (τ _ ∘ (idC ⁂ h #)) ∘ K.₁ swap) ∘ τ _ ∘ swap ≈⟨ {! !} ⟩
μ.η _ ∘ (K.₁ (((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ K.₁ swap) ∘ τ _ ∘ swap ≈⟨ {! !} ⟩
μ.η _ ∘ K.₁ (((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) #) ∘ σ _ ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩
{! !} ≈⟨ {! !} ⟩
μ.η (X × Y) ∘ K.₁ (τ _) ∘ K.₁ swap ∘ ((τ _ +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) # ∘ swap ≈⟨ {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ K.₁ swap ∘ ((τ _ ∘ swap +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ {! !} ⟩
μ.η _ ∘ K.₁ (τ _) ∘ ((σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ {! !} ⟩
μ.η _ ∘ ((K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ≈⟨ {! !} ⟩
((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎ ((μ.η _ ∘ K.₁ (τ _) ∘ σ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∎
where where
-- this leads nowhere
helper₁ : (idC +₁ π₁) ∘ (π₁ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈ i₁ ∘ π₁
helper₁ = begin
(idC +₁ π₁) ∘ (π₁ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ identityʳ) ⟩
(π₁ +₁ π₁) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ≈⟨ {! !} ⟩
i₁ ∘ π₁ ∘ (idC ⁂ h) ≈⟨ refl⟩∘⟨ π₁∘⁂ ⟩
i₁ ∘ idC ∘ π₁ ≈⟨ refl⟩∘⟨ identityˡ ⟩
i₁ ∘ π₁ ∎
test : ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ swap ≈ ((τ (X , Y) ∘ swap +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) # test : ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))# ∘ swap ≈ ((τ (X , Y) ∘ swap +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC)) #
test = sym (#-Uniformity (algebras _) (sym (begin test = sym (#-Uniformity (algebras _) (sym (begin
((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ swap ≈⟨ pullʳ (pullʳ (sym swap∘⁂)) ⟩ ((τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h)) ∘ swap ≈⟨ pullʳ (pullʳ (sym swap∘⁂)) ⟩

View file

@ -0,0 +1,75 @@
{-# OPTIONS --guardedness #-}
-- Take this example as motivation:
-- https://stackoverflow.com/questions/21808186/agda-reading-a-line-of-standard-input-as-a-string-instead-of-a-costring
open import Level
open import Agda.Builtin.Coinduction
module thesis.motivation where
module old-delay where
private
variable
a : Level
data _⊥ (A : Set a) : Set a where
now : A A
later : (A ) A
never : {A : Set a} A
never = later ( never)
module ReverseInput where
open import Data.Char
open import Data.Nat
open import Data.List using (List; []; _∷_)
open import Data.String
open import Data.Unit.Polymorphic
open import Codata.Musical.Costring
open import Codata.Musical.Colist using ([]; _∷_)
-- open import IO using (IO; seq; bind; return; Main; run; putStrLn)
open import IO.Primitive
open import IO.Primitive.Infinite using (getContents)
open import Agda.Builtin.IO using ()
open old-delay
-- IDEA: start in haskell, then motivate in agda and define delay type
-- next talk about bisimilarity.
-- idea for slide title: dlrowolleh.hs and dlrowolleh.agda
private
variable
a : Level
-- reverse : Costring → String ⊥
-- reverse = go []
-- where
-- go : List Char → Costring → String ⊥
-- go acc [] = now (fromList acc)
-- go acc (x ∷ xs) = later (♯ go (x ∷ acc) (♭ xs))
-- putStrLn⊥ : String ⊥ → IO {a}
-- putStrLn⊥ (now s) = putStrLn s
-- putStrLn⊥ (later s) = seq (♯ return tt) (♯ putStrLn⊥ (♭ s))
-- main : Main
-- main = run (bind (♯ {! getContents !}) {! !}) --(λ c → ♯ putStrLn⊥ (reverse c)))
-- NOTE: This is not very understandable... Better stick to the outdated syntax
module delay where
mutual
data _⊥ (A : Set) : Set where
now : A A
later : A ⊥' A
record _⊥' (A : Set) : Set where
coinductive
field
force : A
open _⊥'
mutual
never : {A : Set} A
never = later never'
never' : {A : Set} A ⊥'
force never' = never