open import Level open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.BinaryProducts using (BinaryProducts) open import Categories.Functor using (Functor) renaming (id to idF) open import Categories.Object.Terminal using (Terminal) open import Categories.Object.Product using (Product) open import Categories.Object.Coproduct using (Coproduct) open import Categories.Object.Exponential using (Exponential) open import Categories.Category open import ElgotAlgebra open import Categories.Category.Distributive open import Categories.Category.Extensive.Bundle open import Categories.Category.Extensive import Categories.Morphism as M import Categories.Morphism.Reasoning as MR module ElgotAlgebras where private variable o ℓ e : Level module _ (D : ExtensiveDistributiveCategory o ℓ e) where open ExtensiveDistributiveCategory D renaming (U to C; id to idC) open Cocartesian (Extensive.cocartesian extensive) open Cartesian (ExtensiveDistributiveCategory.cartesian D) open BinaryProducts products open M C open MR C open HomReasoning open Equiv --* -- let's define the category of elgot-algebras --* -- iteration preversing morphism between two elgot-algebras module _ (E₁ E₂ : Elgot-Algebra D) where open Elgot-Algebra E₁ renaming (_# to _#₁) open Elgot-Algebra E₂ renaming (_# to _#₂; A to B) record Elgot-Algebra-Morphism : Set (o ⊔ ℓ ⊔ e) where field h : A ⇒ B preserves : ∀ {X} {f : X ⇒ A + X} → h ∘ (f #₁) ≈ ((h +₁ idC) ∘ f)#₂ -- the category of elgot algebras for a given category Elgot-Algebras : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) e Elgot-Algebras = record { Obj = Elgot-Algebra D ; _⇒_ = Elgot-Algebra-Morphism ; _≈_ = λ f g → Elgot-Algebra-Morphism.h f ≈ Elgot-Algebra-Morphism.h g ; id = λ {EB} → let open Elgot-Algebra EB in record { h = idC; preserves = λ {X : Obj} {f : X ⇒ A + X} → begin idC ∘ f # ≈⟨ identityˡ ⟩ f # ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym)) ⟩ ((idC +₁ idC) ∘ f) # ∎ } ; _∘_ = λ {EA} {EB} {EC} f g → let open Elgot-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ) open Elgot-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ) open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ) open Elgot-Algebra EB using () renaming (_# to _#ᵇ; A to B) open Elgot-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈) in record { h = hᶠ ∘ hᵍ; preserves = λ {X} {f : X ⇒ A + X} → begin (hᶠ ∘ hᵍ) ∘ (f #ᵃ) ≈⟨ pullʳ preservesᵍ ⟩ (hᶠ ∘ (((hᵍ +₁ idC) ∘ f) #ᵇ)) ≈⟨ preservesᶠ ⟩ (((hᶠ +₁ idC) ∘ (hᵍ +₁ idC) ∘ f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²)))) ⟩ ((hᶠ ∘ hᵍ +₁ idC) ∘ f) #ᶜ ∎ } ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; assoc = assoc ; sym-assoc = sym-assoc ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Elgot-Algebra-Morphism --* -- products and exponentials of elgot-algebras --* -- if the carrier contains a terminal, so does elgot-algebras Terminal-Elgot-Algebras : Terminal C → Terminal Elgot-Algebras Terminal-Elgot-Algebras T = record { ⊤ = record { A = ⊤ ; _# = λ x → ! ; #-Fixpoint = λ {_ f} → !-unique ([ idC , ! ] ∘ f) ; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h) ; #-Folding = refl ; #-resp-≈ = λ _ → refl } ; ⊤-is-terminal = record { ! = λ {A} → record { h = ! ; preserves = λ {X} {f} → sym (!-unique (! ∘ (A Elgot-Algebra.#) f)) } ; !-unique = λ {A} f → !-unique (Elgot-Algebra-Morphism.h f) } } where open Terminal T -- if the carriers of the algebra form a product, so do the algebras A×B-Helper : ∀ {EA EB : Elgot-Algebra D} → Elgot-Algebra D A×B-Helper {EA} {EB} = record { A = A × B ; _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩ ; #-Fixpoint = λ {X} {f} → begin ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩ ⟨ [ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ ((π₁ +₁ idC) ∘ f) , [ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ ((π₂ +₁ idC) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ∘ f , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ∘ f ⟩ ≈˘⟨ ⟨⟩∘ ⟩ (⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (unique′ (begin π₁ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₁ ⟩ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁)) ⟩ [ π₁ ∘ idC , π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩ π₁ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎) (begin π₂ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₂ ⟩ [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂)) ⟩ [ π₂ ∘ idC , π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩ π₂ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎) )⟩ ([ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∘ f) ∎ ; #-Uniformity = λ {X Y f g h} uni → unique′ (begin π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₁ ⟩ (((π₁ +₁ idC) ∘ f)#ᵃ) ≈⟨ #ᵃ-Uniformity (begin -- TODO factor these out or adjust +₁ swap... maybe call it +₁-id-comm (idC +₁ h) ∘ (π₁ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm)) ⟩ (π₁ ∘ idC +₁ idC ∘ h) ∘ f ≈˘⟨ pullˡ +₁∘+₁ ⟩ (π₁ +₁ idC) ∘ (idC +₁ h) ∘ f ≈⟨ pushʳ uni ⟩ ((π₁ +₁ idC) ∘ g) ∘ h ∎)⟩ (((π₁ +₁ idC) ∘ g)#ᵃ ∘ h) ≈˘⟨ pullˡ project₁ ⟩ π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎) (begin π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₂ ⟩ ((π₂ +₁ idC) ∘ f)#ᵇ ≈⟨ #ᵇ-Uniformity (begin (idC +₁ h) ∘ (π₂ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))⟩ ((π₂ ∘ idC +₁ idC ∘ h) ∘ f) ≈˘⟨ pullˡ +₁∘+₁ ⟩ (π₂ +₁ idC) ∘ ((idC +₁ h)) ∘ f ≈⟨ pushʳ uni ⟩ ((π₂ +₁ idC) ∘ g) ∘ h ∎)⟩ ((π₂ +₁ idC) ∘ g)#ᵇ ∘ h ≈˘⟨ pullˡ project₂ ⟩ π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎) ; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y}) ; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg)) } where open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈) +₁-id-swap : ∀ {X Y C} {f : X ⇒ (A × B) + X} {h : Y ⇒ X + Y} (π : A × B ⇒ C) → [ (idC +₁ i₁) ∘ ((π +₁ idC) ∘ f) , i₂ ∘ h ] ≈ (π +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] +₁-id-swap {X} {Y} {C} {f} {h} π = begin ([ (idC +₁ i₁) ∘ ((π +₁ idC) ∘ f) , i₂ ∘ h ] ) ≈⟨ ([]-congʳ sym-assoc) ⟩ ([ ((idC +₁ i₁) ∘ (π +₁ idC)) ∘ f , i₂ ∘ h ] ) ≈⟨ []-cong₂ (∘-resp-≈ˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))) (∘-resp-≈ˡ (sym identityʳ)) ⟩ (([ (π ∘ idC +₁ idC ∘ i₁) ∘ f , (i₂ ∘ idC) ∘ h ])) ≈˘⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ +₁∘i₂) ⟩ (([ (π +₁ idC) ∘ (idC +₁ i₁) ∘ f , (π +₁ idC) ∘ i₂ ∘ h ])) ≈˘⟨ ∘[] ⟩ ((π +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∎ foldingˡ : ∀ {X} {Y} {f} {h} → (((π₁ +₁ idC) ∘ (⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ +₁ h))#ᵃ) ≈ ((π₁ +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])#ᵃ foldingˡ {X} {Y} {f} {h} = begin ((π₁ +₁ idC) ∘ (⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₁ identityˡ)) ⟩ ((((π₁ +₁ idC) ∘ f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding ⟩ ([ (idC +₁ i₁) ∘ ((π₁ +₁ idC) ∘ f) , i₂ ∘ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-id-swap π₁)⟩ ((π₁ +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])#ᵃ ∎ foldingʳ : ∀ {X} {Y} {f} {h} → ((π₂ +₁ idC) ∘ (⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ +₁ h))#ᵇ ≈ ((π₂ +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])#ᵇ foldingʳ {X} {Y} {f} {h} = begin ((π₂ +₁ idC) ∘ (⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₂ identityˡ)) ⟩ ((((π₂ +₁ idC) ∘ f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding ⟩ [ (idC +₁ i₁) ∘ ((π₂ +₁ idC) ∘ f) , i₂ ∘ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ (+₁-id-swap π₂) ⟩ ((π₂ +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])#ᵇ ∎ Product-Elgot-Algebras : ∀ (EA EB : Elgot-Algebra D) → Product Elgot-Algebras EA EB Product-Elgot-Algebras EA EB = record { A×B = A×B-Helper {EA} {EB} ; π₁ = record { h = π₁ ; preserves = λ {X} {f} → project₁ } ; π₂ = record { h = π₂ ; preserves = λ {X} {f} → project₂ } ; ⟨_,_⟩ = λ {E} f g → let open Elgot-Algebra-Morphism f renaming (h to f′; preserves to preservesᶠ) open Elgot-Algebra-Morphism g renaming (h to g′; preserves to preservesᵍ) open Elgot-Algebra E renaming (_# to _#ᵉ) in record { h = ⟨ f′ , g′ ⟩ ; preserves = λ {X} {h} → begin ⟨ f′ , g′ ⟩ ∘ (h #ᵉ) ≈⟨ ⟨⟩∘ ⟩ ⟨ f′ ∘ (h #ᵉ) , g′ ∘ (h #ᵉ) ⟩ ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ ⟩ ⟨ ((f′ +₁ idC) ∘ h) #ᵃ , ((g′ +₁ idC) ∘ h) #ᵇ ⟩ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²))) ⟩ ⟨ ((π₁ ∘ ⟨ f′ , g′ ⟩ +₁ idC ∘ idC) ∘ h) #ᵃ , ((π₂ ∘ ⟨ f′ , g′ ⟩ +₁ idC ∘ idC) ∘ h) #ᵇ ⟩ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (pullˡ +₁∘+₁)) (#ᵇ-resp-≈ (pullˡ +₁∘+₁)) ⟩ ⟨ ((π₁ +₁ idC) ∘ (⟨ f′ , g′ ⟩ +₁ idC) ∘ h) #ᵃ , ((π₂ +₁ idC) ∘ (⟨ f′ , g′ ⟩ +₁ idC) ∘ h) #ᵇ ⟩ ∎ } ; project₁ = project₁ ; project₂ = project₂ ; unique = unique } where open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈) open Elgot-Algebra (A×B-Helper {EA} {EB}) using () renaming (_# to _#ᵖ) -- if the carrier is cartesian, so is the category of algebras Cartesian-Elgot-Algebras : Cartesian Elgot-Algebras Cartesian-Elgot-Algebras = record { terminal = Terminal-Elgot-Algebras terminal ; products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB } } -- if the carriers of the algebra form a exponential, so do the algebras B^A-Helper : ∀ {EA : Elgot-Algebra D} {X : Obj} → Exponential C X (Elgot-Algebra.A EA) → Elgot-Algebra D B^A-Helper {EA} {X} exp = record { A = A^X ; _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ) ; #-Fixpoint = λ {X} {f} → {! !} ; #-Uniformity = {! !} ; #-Folding = {! !} ; #-resp-≈ = {! !} } where open Exponential exp renaming (B^A to A^X; product to product') open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) dstr = λ {X Y Z} → IsIso.inv (isIsoˡ {X} {Y} {Z}) dstl = λ {X Y Z} → IsIso.inv (isIsoʳ {X} {Y} {Z})