open import Level open import Categories.Functor renaming (id to idF) open import Categories.Functor.Algebra open import Categories.Category open import Categories.Category.Cartesian open import Categories.Category.BinaryProducts open import Categories.Category.Cocartesian open import Extensive.Bundle import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level module _ (D : ExtensiveDistributiveCategory o ℓ e) where open ExtensiveDistributiveCategory D renaming (U to C; id to idC) open Cocartesian cocartesian open Cartesian cartesian open MR C --* -- F-guarded Elgot Algebra --* module _ {F : Endofunctor C} (FA : F-Algebra F) where record Guarded-Elgot-Algebra : Set (o ⊔ ℓ ⊔ e) where open Functor F public open F-Algebra FA public -- iteration operator field _# : ∀ {X} → (X ⇒ A + F₀ X) → (X ⇒ A) -- _# properties field #-Fixpoint : ∀ {X} {f : X ⇒ A + F₀ X } → f # ≈ [ idC , α ∘ F₁ (f #) ] ∘ f #-Uniformity : ∀ {X Y} {f : X ⇒ A + F₀ X} {g : Y ⇒ A + F₀ Y} {h : X ⇒ Y} → (idC +₁ F₁ h) ∘ f ≈ g ∘ h → f # ≈ g # ∘ h #-Compositionality : ∀ {X Y} {f : X ⇒ A + F₀ X} {h : Y ⇒ X + F₀ Y} → (((f #) +₁ idC) ∘ h)# ≈ ([ (idC +₁ (F₁ i₁)) ∘ f , i₂ ∘ (F₁ i₂) ] ∘ [ i₁ , h ])# ∘ i₂ #-resp-≈ : ∀ {X} {f g : X ⇒ A + F₀ X} → f ≈ g → (f #) ≈ (g #) --* -- (unguarded) Elgot-Algebra --* record Elgot-Algebra : Set (o ⊔ ℓ ⊔ e) where -- Object field A : Obj -- iteration operator field _# : ∀ {X} → (X ⇒ A + X) → (X ⇒ A) -- _# properties field #-Fixpoint : ∀ {X} {f : X ⇒ A + X } → f # ≈ [ idC , f # ] ∘ f #-Uniformity : ∀ {X Y} {f : X ⇒ A + X} {g : Y ⇒ A + Y} {h : X ⇒ Y} → (idC +₁ h) ∘ f ≈ g ∘ h → f # ≈ g # ∘ h #-Folding : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y} → ((f #) +₁ h)# ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # #-resp-≈ : ∀ {X} {f g : X ⇒ A + X} → f ≈ g → (f #) ≈ (g #) open HomReasoning open Equiv -- Compositionality is derivable #-Compositionality : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y} → (((f #) +₁ idC) ∘ h)# ≈ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂ #-Compositionality {X} {Y} {f} {h} = begin (((f #) +₁ idC) ∘ h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) ∘ h} {g = (f #) +₁ h} {h = h} (trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl))⟩ ((f # +₁ h)# ∘ h) ≈˘⟨ inject₂ ⟩ (([ idC ∘ (f #) , (f # +₁ h)# ∘ h ] ∘ i₂)) ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩ (([ idC , ((f # +₁ h)#) ] ∘ (f # +₁ h)) ∘ i₂) ≈˘⟨ #-Fixpoint {f = (f # +₁ h) } ⟩∘⟨refl ⟩ (f # +₁ h)# ∘ i₂ ≈⟨ #-Folding ⟩∘⟨refl ⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂) ≈⟨ #-Fixpoint ⟩∘⟨refl ⟩ ([ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ] ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]) ∘ i₂ ≈⟨ pullʳ inject₂ ⟩ [ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ] ∘ (i₂ ∘ h) ≈⟨ pullˡ inject₂ ⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ h) ≈˘⟨ refl⟩∘⟨ inject₂ {f = i₁} {g = h} ⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ [ i₁ , h ] ∘ i₂) ≈˘⟨ pushˡ (#-Uniformity {f = [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ]} {g = [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]} {h = [ i₁ , h ]} (begin (idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ] ≈⟨ refl⟩∘⟨ ∘[] ⟩ (idC +₁ [ i₁ , h ]) ∘ [ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ i₁ , [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h ] ≈⟨ refl⟩∘⟨ []-congʳ inject₁ ⟩ (idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h ] ≈⟨ ∘[] ⟩ [ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f) , (idC +₁ [ i₁ , h ]) ∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h) ] ≈⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ ∘[]) ⟩ [ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f , [ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f) , (idC +₁ [ i₁ , h ]) ∘ (i₂ ∘ i₂) ] ∘ h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁))) (∘-resp-≈ˡ ([]-cong₂ (pullˡ +₁∘+₁) (pullˡ inject₂))) ⟩ [ (idC +₁ i₁) ∘ f , ([ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f , (i₂ ∘ [ i₁ , h ]) ∘ i₂ ]) ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁)) (pullʳ inject₂))) ⟩ [ (idC +₁ i₁) ∘ f , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ []-congʳ inject₁ ⟩ [ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₁ , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ ∘[] ⟩ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ [ i₁ , h ] ∎)) ⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂ ∎ -- every elgot-algebra comes with a divergence constant !ₑ : ⊥ ⇒ A !ₑ = i₂ # --* -- Here follows the proof of equivalence for unguarded and Id-guarded Elgot-Algebras --* private -- identity algebra Id-Algebra : Obj → F-Algebra (idF {C = C}) Id-Algebra A = record { A = A ; α = idC } where open Functor (idF {C = C}) -- constructing an Id-Guarded Elgot-Algebra from an unguarded one Unguarded→Id-Guarded : (EA : Elgot-Algebra) → Guarded-Elgot-Algebra (Id-Algebra (Elgot-Algebra.A EA)) Unguarded→Id-Guarded ea = record { _# = _# ; #-Fixpoint = λ {X} {f} → trans #-Fixpoint (sym (∘-resp-≈ˡ ([]-congˡ identityˡ))) ; #-Uniformity = #-Uniformity ; #-Compositionality = #-Compositionality ; #-resp-≈ = #-resp-≈ } where open Elgot-Algebra ea open HomReasoning open Equiv -- constructing an unguarded Elgot-Algebra from an Id-Guarded one Id-Guarded→Unguarded : ∀ {A : Obj} → Guarded-Elgot-Algebra (Id-Algebra A) → Elgot-Algebra Id-Guarded→Unguarded gea = record { _# = _# ; #-Fixpoint = λ {X} {f} → trans #-Fixpoint (∘-resp-≈ˡ ([]-congˡ identityˡ)) ; #-Uniformity = #-Uniformity ; #-Folding = λ {X} {Y} {f} {h} → begin ((f #) +₁ h) # ≈˘⟨ +-g-η ⟩ [ (f # +₁ h)# ∘ i₁ , (f # +₁ h)# ∘ i₂ ] ≈⟨ []-cong₂ left right ⟩ [ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₁ , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂ ] ≈⟨ +-g-η ⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] #) ∎ ; #-resp-≈ = #-resp-≈ } where open Guarded-Elgot-Algebra gea open HomReasoning open Equiv left : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y} → (f # +₁ h)# ∘ i₁ ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₁ left {X} {Y} {f} {h} = begin (f # +₁ h)# ∘ i₁ ≈⟨ #-Fixpoint ⟩∘⟨refl ⟩ ([ idC , idC ∘ (((f #) +₁ h) #) ] ∘ ((f #) +₁ h)) ∘ i₁ ≈⟨ pullʳ +₁∘i₁ ⟩ [ idC , idC ∘ (((f #) +₁ h) #) ] ∘ (i₁ ∘ f #) ≈⟨ cancelˡ inject₁ ⟩ (f #) ≈⟨ #-Uniformity {f = f} {g = [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]} {h = i₁} (sym inject₁)⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₁) ∎ byUni : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y} → (idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ] ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ [ i₁ , h ] byUni {X} {Y} {f} {h} = begin (idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ] ≈⟨ ∘-resp-≈ʳ (trans ∘[] ([]-congʳ inject₁)) ⟩ (idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h ] ≈⟨ ∘[] ⟩ [ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f) , (idC +₁ [ i₁ , h ]) ∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ h) ] ≈⟨ []-cong₂ sym-assoc sym-assoc ⟩ [ ((idC +₁ [ i₁ , h ]) ∘ (idC +₁ i₁)) ∘ f , ((idC +₁ [ i₁ , h ]) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ]) ∘ h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ ∘[]) ⟩ [ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f , [ (idC +₁ [ i₁ , h ]) ∘ ((idC +₁ i₁) ∘ f) , (idC +₁ [ i₁ , h ]) ∘ (i₂ ∘ i₂) ] ∘ h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁))) (∘-resp-≈ˡ ([]-cong₂ sym-assoc sym-assoc)) ⟩ [ (idC +₁ i₁) ∘ f , [ ((idC +₁ [ i₁ , h ]) ∘ (idC +₁ i₁)) ∘ f , ((idC +₁ [ i₁ , h ]) ∘ i₂) ∘ i₂ ] ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ inject₂))) ⟩ [ (idC +₁ i₁) ∘ f , [ ((idC ∘ idC) +₁ ([ i₁ , h ] ∘ i₁)) ∘ f , (i₂ ∘ [ i₁ , h ]) ∘ i₂ ] ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁)) assoc)) ⟩ [ (idC +₁ i₁) ∘ f , [ (idC +₁ i₁) ∘ f , i₂ ∘ ([ i₁ , h ] ∘ i₂) ] ∘ h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂))) ⟩ [ (idC +₁ i₁) ∘ f , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ []-congʳ inject₁ ⟩ [ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₁ , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ h ] ≈˘⟨ ∘[] ⟩ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ [ i₁ , h ] ∎ right : ∀ {X Y} {f : X ⇒ A + X} {h : Y ⇒ X + Y} → (f # +₁ h)# ∘ i₂ ≈ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂ right {X} {Y} {f} {h} = begin (f # +₁ h)# ∘ i₂ ≈⟨ ∘-resp-≈ˡ #-Fixpoint ⟩ ([ idC , idC ∘ (((f #) +₁ h) #) ] ∘ ((f #) +₁ h)) ∘ i₂ ≈⟨ pullʳ +₁∘i₂ ⟩ [ idC , idC ∘ (((f #) +₁ h) #) ] ∘ i₂ ∘ h ≈⟨ pullˡ inject₂ ⟩ (idC ∘ (((f #) +₁ h) #)) ∘ h ≈⟨ (identityˡ ⟩∘⟨refl) ⟩ ((f #) +₁ h) # ∘ h ≈˘⟨ #-Uniformity {f = ((f #) +₁ idC) ∘ h} {g = (f #) +₁ h} {h = h} (pullˡ (trans (+₁∘+₁) (+₁-cong₂ identityˡ identityʳ)))⟩ (((f #) +₁ idC) ∘ h) # ≈⟨ #-Compositionality ⟩ (([ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ])# ∘ i₂) ≈⟨ ∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) ∘ f , i₂ ∘ i₂ ] ∘ [ i₁ , h ]} {g = [ (idC +₁ i₁) ∘ f , i₂ ∘ h ]} {h = [ i₁ , h ]} byUni)⟩ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ [ i₁ , h ]) ∘ i₂ ≈⟨ pullʳ inject₂ ⟩ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ h ≈˘⟨ inject₂ ⟩∘⟨refl ⟩ ([ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ] ∘ i₂) ∘ h ≈˘⟨ pushʳ inject₂ ⟩ [ idC , [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ] ∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₂) ≈˘⟨ []-congˡ identityˡ ⟩∘⟨refl ⟩ [ idC , idC ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ] ∘ ([ (idC +₁ i₁) ∘ f , i₂ ∘ h ] ∘ i₂) ≈˘⟨ pushˡ #-Fixpoint ⟩ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ] # ∘ i₂ ∎