# The Maybe Monad ```agda module Monad.Instance.Maybe {o ℓ e} {C : Category o ℓ e} (distributive : Distributive C) where open Category C open MR C open HomReasoning open Equiv open Distributive distributive open Cocartesian cocartesian open Cartesian cartesian using (terminal) open Terminal terminal ``` The functor X + 1: ```agda maybeFunctor : Endofunctor C maybeFunctor = record { F₀ = λ X → X + ⊤ ; F₁ = λ f → f +₁ id ; identity = +-unique id-comm-sym id-comm-sym ; homomorphism = sym (+₁∘+₁ ○ +₁-cong₂ refl identity²) ; F-resp-≈ = λ eq → +₁-cong₂ eq refl } ``` extends to a monad: ```agda open Monad renaming (identityˡ to m-identityˡ; identityʳ to m-identityʳ; assoc to m-assoc; sym-assoc to m-sym-assoc) maybeMonad : Monad C maybeMonad .F = maybeFunctor maybeMonad .η = ntHelper (record { η = λ _ → i₁ ; commute = λ _ → sym inject₁ }) maybeMonad .μ = ntHelper (record { η = λ _ → [ id , i₂ ] ; commute = λ _ → []∘+₁ ○ []-cong₂ id-comm-sym (sym inject₂) ○ sym ∘[]}) maybeMonad .m-assoc = begin [ id , i₂ ] ∘ ([ id , i₂ ] +₁ id) ≈⟨ []∘+₁ ⟩ [ id ∘ [ id , i₂ ] , i₂ ∘ id ] ≈˘⟨ []-cong₂ id-comm (inject₂ ○ introʳ refl) ⟩ [ [ id , i₂ ] ∘ id , [ id , i₂ ] ∘ i₂ ] ≈˘⟨ ∘[] ⟩ [ id , i₂ ] ∘ [ id , i₂ ] ∎ maybeMonad .m-sym-assoc = sym (m-assoc maybeMonad) maybeMonad .m-identityˡ = []∘+₁ ○ +-unique refl id-comm-sym maybeMonad .m-identityʳ = inject₁ ```