## Summary This file introduces the delay monad ***D*** - [ ] *Proposition 1* Characterization of the delay monad ***D*** - [ ] *Proposition 2* ***D*** is commutative ## Code
module Monad.Instance.Delay {o  e} (ED : ExtensiveDistributiveCategory o  e) where
  open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
  open Cocartesian (Extensive.cocartesian extensive)
  open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
  open BinaryProducts products

  open M C
  open MR C
  open Equiv
  open HomReasoning
  open CoLambek
### *Proposition 1*: Characterization of the delay monad ***D***
  delayF : Obj  Endofunctor C
  delayF Y = record
    { F₀ = Y +_
    ; F₁ = idC +₁_
    ; identity = CC.coproduct.unique id-comm-sym id-comm-sym
    ; homomorphism =  (+₁∘+₁  +₁-cong₂ identity² refl) 
    ; F-resp-≈ = +₁-cong₂ refl
    }

  record DelayM : Set (o    e) where
    field
      algebras :  (A : Obj)  Terminal (F-Coalgebras (delayF A))
    
    module D A = Functor (delayF A)

    module _ (X : Obj) where
      open Terminal (algebras X) using (; !)
      open F-Coalgebra  renaming (A to DX)

      D₀ = DX

      out-≅ : DX  X + DX
      out-≅ = colambek {F = delayF X} (algebras X)

      -- note: out-≅.from ≡ ⊤.α
      open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public

      now : X  DX
      now = out⁻¹  i₁

      later : DX  DX
      later = out⁻¹  i₂

      -- TODO inline
      unitlaw : out  now  i₁
      unitlaw = cancelˡ (_≅_.isoʳ out-≅)

      module _ {Y : Obj} where 
        coit : Y  X + Y  Y  DX
        coit f = F-Coalgebra-Morphism.f (! {A = record { A = Y ; α = f }})

        coit-commutes :  (f : Y  X + Y)  out  (coit f)  (idC +₁ coit f)  f
        coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }})

    monad : Monad C
    monad = Kleisli⇒Monad C (record
      { F₀ = D₀ 
      ; unit = λ {X}  now X
      ; extend = extend
      ; identityʳ = λ {X} {Y} {f}  begin 
        extend f  now X                                          ≈⟨ (insertˡ (_≅_.isoˡ (out-≅ Y))) ⟩∘⟨refl  
        (out⁻¹ Y  out Y  extend f)  now X                      ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl 
        (out⁻¹ Y  [ out Y  f , i₂  extend f ]  out X)  now X ≈⟨ pullʳ (pullʳ (unitlaw X)) 
        out⁻¹ Y  [ out Y  f , i₂  extend f ]  i₁              ≈⟨ refl⟩∘⟨ inject₁ 
        out⁻¹ Y  out Y  f                                       ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) 
        f                                                         
      ; identityˡ = λ {X}  Terminal.⊤-id (algebras X) (record { f = extend (now X) ; commutes = begin 
        out X  extend (now X)                                                                                             ≈⟨ pullˡ ((F-Coalgebra-Morphism.commutes (Terminal.! (algebras X) {A = alg (now X)})))  
        ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  F-Coalgebra.α (alg (now X)))  i₁ ≈⟨ pullʳ inject₁ 
        (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) 
         [ [ i₁ , i₂  i₂ ]  (out X  (now X)) , i₂  i₁ ]  out X                                                       ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ (unitlaw X))  inject₁) refl ⟩∘⟨refl 
        (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  [ i₁ , i₂  i₁ ]  out X           ≈⟨ pullˡ ∘[] 
        [ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₁ 
        , (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₂  i₁ ]  out X                ≈⟨ ([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl 
        [ i₁  idC , (i₂  (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)})))  i₁ ]  out X            ≈⟨ ([]-cong₂ refl assoc) ⟩∘⟨refl 
        [ i₁  idC , i₂  (extend (now X)) ]  out X                                                                       ≈˘⟨ []∘+₁ ⟩∘⟨refl 
        ([ i₁ , i₂ ]  (idC +₁ extend (now X)))  out X                                                                    ≈⟨ (elimˡ +-η) ⟩∘⟨refl 
        (idC +₁ extend (now X))  out X                                                                                     })
      ; assoc = {!   !}
      ; sym-assoc = {!   !}
      ; extend-≈ = λ {X} {Y} {f} {g} eq  {!   !}
      
        -- begin 
        --   extend f ≈⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend f ; commutes = F-Coalgebra-Morphism.commutes {!   !} })) ⟩ 
        --   F-Coalgebra-Morphism.f ((Terminal.! (algebras Y) {A = alg' {X} {Y}})) ≈˘⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend g ; commutes = {!   !} })) ⟩
        --   extend g ∎
      
        -- let 
        --   h : F-Coalgebra-Morphism (alg f) (alg g)
        --   h = record { f = idC ; commutes = begin 
        --     F-Coalgebra.α (alg g) ∘ idC ≈⟨ id-comm ⟩ 
        --     idC ∘ F-Coalgebra.α (alg g) ≈⟨ refl⟩∘⟨ []-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ (sym eq))) refl) ⟩∘⟨refl) refl ⟩ 
        --     idC ∘ F-Coalgebra.α (alg f) ≈˘⟨ ([]-cong₂ identityʳ identityʳ ○ +-η) ⟩∘⟨refl ⟩
        --     (idC +₁ idC) ∘ F-Coalgebra.α (alg f) ∎ }
        --   x : F-Coalgebra-Morphism (alg f) (Terminal.⊤ (algebras Y))
        --   x = (F-Coalgebras (delayF Y)) [ Terminal.! (algebras Y) ∘ h ]
        -- in Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = {!   !} } ⟩∘⟨refl
        
        -- extend f ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩ 
        -- out⁻¹ Y ∘ out Y ∘ extend f ≈⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg f})) ⟩
        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ ((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y) {A = alg f}} {g = Terminal.! (algebras Y) {A = alg f}}) ⟩∘⟨ ([]-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ eq)) refl) ⟩∘⟨refl) refl)) ⟩∘⟨refl) ⟩
        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ (((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = record { f = F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ; commutes = {!   !} }})) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
        -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈˘⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg g})) ⟩
        -- out⁻¹ Y ∘ out Y ∘ extend g ≈˘⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩
        -- extend g ∎
      })
      where
        alg' :  {X Y}  F-Coalgebra (delayF Y)
        alg' {X} {Y} = record { A = D₀ X ; α = i₂ }
        module _ {X Y : Obj} (f : X  D₀ Y) where
          open Terminal (algebras Y) using (!; ⊤-id)
          alg : F-Coalgebra (delayF Y)
          alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂  i₂ ]  (out Y  f) , i₂  i₁ ]  out X , (idC +₁ i₂)  out Y ] }  -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm)
          extend : D₀ X  D₀ Y
          extend = F-Coalgebra-Morphism.f (! {A = alg})  i₁ {B = D₀ Y}
          !∘i₂ : F-Coalgebra-Morphism.f (! {A = alg})  i₂  idC
          !∘i₂ = ⊤-id (F-Coalgebras (delayF Y) [ !  record { f = i₂ ; commutes = inject₂ } ] )
          extendlaw : out Y  extend  [ out Y  f , i₂  extend ]  out X
          extendlaw = begin 
            out Y  extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! {A = alg}))  
            ((idC +₁ (F-Coalgebra-Morphism.f !))  F-Coalgebra.α alg)  coproduct.i₁                   ≈⟨ pullʳ inject₁ 
            (idC +₁ (F-Coalgebra-Morphism.f !))  [ [ i₁ , i₂  i₂ ]  (out Y  f) , i₂  i₁ ]  out X ≈⟨ pullˡ ∘[] 
            [ (idC +₁ (F-Coalgebra-Morphism.f !))  [ i₁ , i₂  i₂ ]  (out Y  f) 
            , (idC +₁ (F-Coalgebra-Morphism.f !))  i₂  i₁ ]  out X                                  ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl 
            [ [ (idC +₁ (F-Coalgebra-Morphism.f !))  i₁ 
              , (idC +₁ (F-Coalgebra-Morphism.f !))  i₂  i₂ ]  (out Y  f) 
            , (i₂  (F-Coalgebra-Morphism.f !))  i₁ ]  out X                                         ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl 
            [ [ i₁  idC , (i₂  (F-Coalgebra-Morphism.f !))  i₂ ]  (out Y  f) 
            , (i₂  (F-Coalgebra-Morphism.f !))  i₁ ]  out X                                         ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂))  +-η)) assoc) ⟩∘⟨refl 
            [ out Y  f , i₂  extend ]  out X  
### Old definitions:
  record DelayMonad : Set (o    e) where
    field
      D₀ : Obj  Obj

    field
      now :  {X}  X  D₀ X
      later :  {X}  D₀ X  D₀ X
      isIso :  {X}  IsIso ([ now {X} , later {X} ])

    out :  {X}  D₀ X  X + D₀ X
    out {X} = IsIso.inv (isIso {X})

    field
      coit :  {X Y}  Y  X + Y  Y  D₀ X
      coit-law :  {X Y} {f : Y  X + Y}  out  (coit f)  (idC +₁ (coit f))  f

    field
      _* :  {X Y}  X  D₀ Y  D₀ X  D₀ Y
      *-law :  {X Y} {f : X  D₀ Y}  out  (f *)  [ out  f , i₂  (f *) ]  out
      *-unique :  {X Y} (f : X  D₀ Y) (h : D₀ X  D₀ Y)  h  f *
      *-resp-≈ :  {X Y} {f h : X  D₀ Y}  f  h  f *  h * 

    unitLaw :  {X}  out {X}  now {X}  i₁
    unitLaw = begin 
      out  now                  ≈⟨ refl⟩∘⟨ sym inject₁  
      out  [ now , later ]  i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) 
      i₁ 

    toMonad : KleisliTriple C
    toMonad = record
      { F₀ = D₀
      ; unit = now
      ; extend = _*
      ; identityʳ = λ {X} {Y} {k}  begin 
        k *  now                                                ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl  
        (([ now , later ]  out)  k *)  now                    ≈⟨ pullʳ *-law ⟩∘⟨refl 
        ([ now , later ]  [ out  k , i₂  (k *) ]  out)  now ≈⟨ pullʳ (pullʳ unitLaw) 
        [ now , later ]  [ out  k , i₂  (k *) ]  i₁          ≈⟨ refl⟩∘⟨ inject₁ 
        [ now , later ]  out  k                                ≈⟨ cancelˡ (IsIso.isoʳ isIso) 
        k 
      ; identityˡ = λ {X}  sym (*-unique now idC)
      ; assoc = λ {X} {Y} {Z} {f} {g}  sym (*-unique ((g *)  f) ((g *)  (f *)))
      ; sym-assoc = λ {X} {Y} {Z} {f} {g}  *-unique ((g *)  f) ((g *)  (f *))
      ; extend-≈ = *-resp-≈
      }
### Definition 30: Search-Algebras TODO ### Proposition 31 : the category of uniform-iteration algebras coincides with the category of search-algebras TODO