## Summary This file introduces the delay monad ***D*** - [ ] *Proposition 1* Characterization of the delay monad ***D*** - [ ] *Proposition 2* ***D*** is commutative ## Code
module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) where open ExtensiveDistributiveCategory ED renaming (U to C; id to idC) open Cocartesian (Extensive.cocartesian extensive) open Cartesian (ExtensiveDistributiveCategory.cartesian ED) open BinaryProducts products open M C open MR C open Equiv open HomReasoning open CoLambek### *Proposition 1*: Characterization of the delay monad ***D***
delayF : Obj → Endofunctor C delayF Y = record { F₀ = Y +_ ; F₁ = idC +₁_ ; identity = CC.coproduct.unique id-comm-sym id-comm-sym ; homomorphism = ⟺ (+₁∘+₁ ○ +₁-cong₂ identity² refl) ; F-resp-≈ = +₁-cong₂ refl } record DelayM : Set (o ⊔ ℓ ⊔ e) where field algebras : ∀ (A : Obj) → Terminal (F-Coalgebras (delayF A)) module D A = Functor (delayF A) module _ (X : Obj) where open Terminal (algebras X) using (⊤; !) open F-Coalgebra ⊤ renaming (A to DX) D₀ = DX out-≅ : DX ≅ X + DX out-≅ = colambek {F = delayF X} (algebras X) -- note: out-≅.from ≡ ⊤.α open _≅_ out-≅ using () renaming (to to out⁻¹; from to out) public now : X ⇒ DX now = out⁻¹ ∘ i₁ later : DX ⇒ DX later = out⁻¹ ∘ i₂ -- TODO inline unitlaw : out ∘ now ≈ i₁ unitlaw = cancelˡ (_≅_.isoʳ out-≅) module _ {Y : Obj} where coit : Y ⇒ X + Y → Y ⇒ DX coit f = F-Coalgebra-Morphism.f (! {A = record { A = Y ; α = f }}) coit-commutes : ∀ (f : Y ⇒ X + Y) → out ∘ (coit f) ≈ (idC +₁ coit f) ∘ f coit-commutes f = F-Coalgebra-Morphism.commutes (! {A = record { A = Y ; α = f }}) monad : Monad C monad = Kleisli⇒Monad C (record { F₀ = D₀ ; unit = λ {X} → now X ; extend = extend ; identityʳ = λ {X} {Y} {f} → begin extend f ∘ now X ≈⟨ (insertˡ (_≅_.isoˡ (out-≅ Y))) ⟩∘⟨refl ⟩ (out⁻¹ Y ∘ out Y ∘ extend f) ∘ now X ≈⟨ (refl⟩∘⟨ (extendlaw f)) ⟩∘⟨refl ⟩ (out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ out X) ∘ now X ≈⟨ pullʳ (pullʳ (unitlaw X)) ⟩ out⁻¹ Y ∘ [ out Y ∘ f , i₂ ∘ extend f ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩ out⁻¹ Y ∘ out Y ∘ f ≈⟨ cancelˡ (_≅_.isoˡ (out-≅ Y)) ⟩ f ∎ ; identityˡ = λ {X} → Terminal.⊤-id (algebras X) (record { f = extend (now X) ; commutes = begin out X ∘ extend (now X) ≈⟨ pullˡ ((F-Coalgebra-Morphism.commutes (Terminal.! (algebras X) {A = alg (now X)}))) ⟩ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ F-Coalgebra.α (alg (now X))) ∘ i₁ ≈⟨ pullʳ inject₁ ⟩ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out X ∘ (now X)) , i₂ ∘ i₁ ] ∘ out X ≈⟨ refl⟩∘⟨ []-cong₂ ((refl⟩∘⟨ (unitlaw X)) ○ inject₁) refl ⟩∘⟨refl ⟩ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ [ i₁ , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩ [ (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₁ , (idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f (Terminal.! (algebras X) {A = alg (now X)}))) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ refl assoc) ⟩∘⟨refl ⟩ [ i₁ ∘ idC , i₂ ∘ (extend (now X)) ] ∘ out X ≈˘⟨ []∘+₁ ⟩∘⟨refl ⟩ ([ i₁ , i₂ ] ∘ (idC +₁ extend (now X))) ∘ out X ≈⟨ (elimˡ +-η) ⟩∘⟨refl ⟩ (idC +₁ extend (now X)) ∘ out X ∎ }) ; assoc = {! !} ; sym-assoc = {! !} ; extend-≈ = λ {X} {Y} {f} {g} eq → {! !} -- begin -- extend f ≈⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend f ; commutes = F-Coalgebra-Morphism.commutes {! !} })) ⟩ -- F-Coalgebra-Morphism.f ((Terminal.! (algebras Y) {A = alg' {X} {Y}})) ≈˘⟨ sym (Terminal.!-unique (algebras Y) (record { f = extend g ; commutes = {! !} })) ⟩ -- extend g ∎ -- let -- h : F-Coalgebra-Morphism (alg f) (alg g) -- h = record { f = idC ; commutes = begin -- F-Coalgebra.α (alg g) ∘ idC ≈⟨ id-comm ⟩ -- idC ∘ F-Coalgebra.α (alg g) ≈⟨ refl⟩∘⟨ []-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ (sym eq))) refl) ⟩∘⟨refl) refl ⟩ -- idC ∘ F-Coalgebra.α (alg f) ≈˘⟨ ([]-cong₂ identityʳ identityʳ ○ +-η) ⟩∘⟨refl ⟩ -- (idC +₁ idC) ∘ F-Coalgebra.α (alg f) ∎ } -- x : F-Coalgebra-Morphism (alg f) (Terminal.⊤ (algebras Y)) -- x = (F-Coalgebras (delayF Y)) [ Terminal.! (algebras Y) ∘ h ] -- in Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = {! !} } ⟩∘⟨refl -- extend f ≈⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩ -- out⁻¹ Y ∘ out Y ∘ extend f ≈⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg f})) ⟩ -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ ((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y) {A = alg f}} {g = Terminal.! (algebras Y) {A = alg f}}) ⟩∘⟨ ([]-cong₂ (([]-cong₂ (refl⟩∘⟨ (refl⟩∘⟨ eq)) refl) ⟩∘⟨refl) refl)) ⟩∘⟨refl) ⟩ -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈⟨ refl⟩∘⟨ (((+₁-cong₂ refl (Terminal.!-unique₂ (algebras Y) {f = Terminal.! (algebras Y)} {g = record { f = F-Coalgebra-Morphism.f (Terminal.! (algebras Y)) ; commutes = {! !} }})) ⟩∘⟨refl) ⟩∘⟨refl) ⟩ -- out⁻¹ Y ∘ ((idC +₁ (F-Coalgebra-Morphism.f (Terminal.! (algebras Y)))) ∘ [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ g) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ]) ∘ i₁ ≈˘⟨ refl⟩∘⟨ pullˡ (F-Coalgebra-Morphism.commutes (Terminal.! (algebras Y) {A = alg g})) ⟩ -- out⁻¹ Y ∘ out Y ∘ extend g ≈˘⟨ insertˡ (_≅_.isoˡ (out-≅ Y)) ⟩ -- extend g ∎ }) where alg' : ∀ {X Y} → F-Coalgebra (delayF Y) alg' {X} {Y} = record { A = D₀ X ; α = i₂ } module _ {X Y : Obj} (f : X ⇒ D₀ Y) where open Terminal (algebras Y) using (!; ⊤-id) alg : F-Coalgebra (delayF Y) alg = record { A = D₀ X + D₀ Y ; α = [ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X , (idC +₁ i₂) ∘ out Y ] } -- (idC +₁ (idC +₁ [ idC , idC ]) ∘ _≅_.to +-assoc ∘ _≅_.to +-comm) extend : D₀ X ⇒ D₀ Y extend = F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₁ {B = D₀ Y} !∘i₂ : F-Coalgebra-Morphism.f (! {A = alg}) ∘ i₂ ≈ idC !∘i₂ = ⊤-id (F-Coalgebras (delayF Y) [ ! ∘ record { f = i₂ ; commutes = inject₂ } ] ) extendlaw : out Y ∘ extend ≈ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X extendlaw = begin out Y ∘ extend ≈⟨ pullˡ (F-Coalgebra-Morphism.commutes (! {A = alg})) ⟩ ((idC +₁ (F-Coalgebra-Morphism.f !)) ∘ F-Coalgebra.α alg) ∘ coproduct.i₁ ≈⟨ pullʳ inject₁ ⟩ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , i₂ ∘ i₁ ] ∘ out X ≈⟨ pullˡ ∘[] ⟩ [ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ [ i₁ , i₂ ∘ i₂ ] ∘ (out Y ∘ f) , (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (pullˡ ∘[]) (pullˡ +₁∘i₂)) ⟩∘⟨refl ⟩ [ [ (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₁ , (idC +₁ (F-Coalgebra-Morphism.f !)) ∘ i₂ ∘ i₂ ] ∘ (out Y ∘ f) , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (([]-cong₂ +₁∘i₁ (pullˡ +₁∘i₂)) ⟩∘⟨refl) refl) ⟩∘⟨refl ⟩ [ [ i₁ ∘ idC , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₂ ] ∘ (out Y ∘ f) , (i₂ ∘ (F-Coalgebra-Morphism.f !)) ∘ i₁ ] ∘ out X ≈⟨ ([]-cong₂ (elimˡ (([]-cong₂ identityʳ (cancelʳ !∘i₂)) ○ +-η)) assoc) ⟩∘⟨refl ⟩ [ out Y ∘ f , i₂ ∘ extend ] ∘ out X ∎### Old definitions:
record DelayMonad : Set (o ⊔ ℓ ⊔ e) where field D₀ : Obj → Obj field now : ∀ {X} → X ⇒ D₀ X later : ∀ {X} → D₀ X ⇒ D₀ X isIso : ∀ {X} → IsIso ([ now {X} , later {X} ]) out : ∀ {X} → D₀ X ⇒ X + D₀ X out {X} = IsIso.inv (isIso {X}) field coit : ∀ {X Y} → Y ⇒ X + Y → Y ⇒ D₀ X coit-law : ∀ {X Y} {f : Y ⇒ X + Y} → out ∘ (coit f) ≈ (idC +₁ (coit f)) ∘ f field _* : ∀ {X Y} → X ⇒ D₀ Y → D₀ X ⇒ D₀ Y *-law : ∀ {X Y} {f : X ⇒ D₀ Y} → out ∘ (f *) ≈ [ out ∘ f , i₂ ∘ (f *) ] ∘ out *-unique : ∀ {X Y} (f : X ⇒ D₀ Y) (h : D₀ X ⇒ D₀ Y) → h ≈ f * *-resp-≈ : ∀ {X Y} {f h : X ⇒ D₀ Y} → f ≈ h → f * ≈ h * unitLaw : ∀ {X} → out {X} ∘ now {X} ≈ i₁ unitLaw = begin out ∘ now ≈⟨ refl⟩∘⟨ sym inject₁ ⟩ out ∘ [ now , later ] ∘ i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) ⟩ i₁ ∎ toMonad : KleisliTriple C toMonad = record { F₀ = D₀ ; unit = now ; extend = _* ; identityʳ = λ {X} {Y} {k} → begin k * ∘ now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl ⟩ (([ now , later ] ∘ out) ∘ k *) ∘ now ≈⟨ pullʳ *-law ⟩∘⟨refl ⟩ ([ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitLaw) ⟩ [ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩ [ now , later ] ∘ out ∘ k ≈⟨ cancelˡ (IsIso.isoʳ isIso) ⟩ k ∎ ; identityˡ = λ {X} → sym (*-unique now idC) ; assoc = λ {X} {Y} {Z} {f} {g} → sym (*-unique ((g *) ∘ f) ((g *) ∘ (f *))) ; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *)) ; extend-≈ = *-resp-≈ }### Definition 30: Search-Algebras TODO ### Proposition 31 : the category of uniform-iteration algebras coincides with the category of search-algebras TODO