## Summary In this file I explore the monad ***K*** and its properties: - [X] *Lemma 16* Definition of the monad - [ ] *Lemma 16* EilenbergMoore⇒UniformIterationAlgebras (use [crude monadicity theorem](https://agda.github.io/agda-categories/Categories.Adjoint.Monadic.Crude.html)) - [ ] *Proposition 19* ***K*** is strong - [ ] *Theorem 22* ***K*** is an equational lifting monad - [ ] *Proposition 23* The Kleisli category of ***K*** is enriched over pointed partial orders and strict monotone maps - [ ] *Proposition 25* ***K*** is copyable and weakly discardable - [ ] *Theorem 29* ***K*** is an initial pre-Elgot monad and an initial strong pre-Elgot monad ## Code ```agda module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where open Ambient ambient open import Category.Construction.UniformIterationAlgebras ambient open import Algebra.UniformIterationAlgebra open import Algebra.Properties ambient using (FreeUniformIterationAlgebra; uniformForgetfulF; IsStableFreeUniformIterationAlgebra) open Equiv open HomReasoning ``` ### *Lemma 16*: definition of monad ***K*** ```agda record MonadK : Set (suc o ⊔ suc ℓ ⊔ suc e) where field algebras : ∀ X → FreeUniformIterationAlgebra X freeF : Functor C Uniform-Iteration-Algebras freeF = FO⇒Functor uniformForgetfulF algebras adjoint : freeF ⊣ uniformForgetfulF adjoint = FO⇒LAdj uniformForgetfulF algebras K : Monad C K = adjoint⇒monad adjoint ``` ### *Proposition 19* If the algebras are stable then K is strong ```agda record MonadKStrong : Set (suc o ⊔ suc ℓ ⊔ suc e) where field algebras : ∀ X → FreeUniformIterationAlgebra X stable : ∀ X → IsStableFreeUniformIterationAlgebra (algebras X) K : Monad C K = MonadK.K (record { algebras = algebras }) open Monad K using (F) open Functor F using () renaming (F₀ to K₀; F₁ to K₁) KStrong : StrongMonad {C = C} monoidal KStrong = record { M = K ; strength = record { strengthen = ntHelper (record { η = τ ; commute = commute' }) ; identityˡ = λ {X} → begin K₁ π₂ ∘ τ _ ≈⟨ refl ⟩ Uniform-Iteration-Algebra-Morphism.h ((algebras (Terminal.⊤ terminal × X) FreeObject.*) (FreeObject.η (algebras X) ∘ π₂)) ∘ τ _ ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩ π₂ ∎ ; η-comm = λ {A} {B} → begin τ _ ∘ (idC ⁂ η (A , B) B) ≈⟨ τ-η (A , B) ⟩ η (A , B) (A × B) ∎ ; μ-η-comm = λ {A} {B} → {! !} ; strength-assoc = λ {A} {B} {D} → begin K₁ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∘ τ _ ≈⟨ {! !} ⟩ τ _ ∘ (idC ⁂ τ _) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∎ } } where open import Agda.Builtin.Sigma open IsStableFreeUniformIterationAlgebra using (♯-law; ♯-preserving) module _ (P : Category.Obj (CProduct C C)) where η = λ Z → FreeObject.η (algebras Z) [_,_,_]♯ = λ {A} X Y f → IsStableFreeUniformIterationAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} Y f X = fst P Y = snd P τ : X × K₀ Y ⇒ K₀ (X × Y) τ = [ Y , FreeObject.FX (algebras (X × Y)) , η (X × Y) ]♯ τ-η : τ ∘ (idC ⁂ η Y) ≈ η (X × Y) τ-η = sym (♯-law (stable Y) (η (X × Y))) [_,_]# : ∀ (A : Uniform-Iteration-Algebra ambient) {X} → (X ⇒ ((Uniform-Iteration-Algebra.A A) + X)) → (X ⇒ Uniform-Iteration-Algebra.A A) [ A , f ]# = Uniform-Iteration-Algebra._# A f τ-comm : ∀ {X Y Z : Obj} (h : Z ⇒ K₀ Y + Z) → τ (X , Y) ∘ (idC ⁂ [ FreeObject.FX (algebras Y) , h ]#) ≈ [ FreeObject.FX (algebras (X × Y)) , (τ (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h) ]# τ-comm {X} {Y} {Z} h = ♯-preserving (stable Y) (η (X , Y) (X × Y)) h commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_,_] (CProduct C C) P₁ P₂) → τ P₂ ∘ ((fst fg) ⁂ K₁ (snd fg)) ≈ K₁ ((fst fg) ⁂ (snd fg)) ∘ τ P₁ commute' {(U , V)} {(W , X)} (f , g) = begin τ _ ∘ (f ⁂ Uniform-Iteration-Algebra-Morphism.h ((algebras V FreeObject.*) (FreeObject.η (algebras X) ∘ g))) ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩ Uniform-Iteration-Algebra-Morphism.h ((algebras (U × V) FreeObject.*) (FreeObject.η (algebras (W × X)) ∘ (f ⁂ g))) ∘ τ _ ∎ ```