mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
No description
Monad | ||
.gitignore | ||
bsc.agda-lib | ||
ElgotAlgebra.agda | ||
ElgotAlgebras.agda | ||
ElgotIteration.agda | ||
MonadK.agda | ||
README.md | ||
UniformIterationAlgebra.agda | ||
UniformIterationAlgebras.agda |
BSc Leon Vatthauer
Here I am formalizing some notions of this paper https://arxiv.org/pdf/2102.11828.pdf in agda.
Running the project
TODO
Contributions to agda-categories
This project uses the awesome category theory library for agda (agda-categories), it is already very extensive, but some notions needed here are missing, so I contribute them to the library. So far the contributions are:
- Kleisli triples [merged]
Categories.Monad.Construction.Kleisli
- Distributive categories (and the relation to extensivity) [merged]
Categories.Category.Distributive
Categories.Category.Extensive.Bundle
Categories.Category.Extensive.Properties.Distributive
- Commutative categories [TODO]
Goals
Monad.Instance.Delay
- Formalize the delay monad (as kleisli triple)
- Show that a strong delay monad is commutative (also needs formalization of strong delay monad)
ElgotAlgebra.agda
- Formalize (un-)guarded elgot-algebra.
- Show the equivalence of
#-Folding
and#-Compositionality
in the unguarded case. (Proposition 10)
ElgotAlgebras.agda
- Formalize the category of elgot algebras for a given carrier.
- Show existence of products in this category
- Show existence of exponentials (if carrier has exponentials)
ElgotMonad.agda
[TODO]- Formalize (strong) (pre) elgot monad
- Show ElgotMonad->PreElgotMonat
- Monad K [TODO]
- Definitions using free uniform iteration algebras
- strength
- stable free uniform iteration algebras (and the relation to CCC carriers)
- ...
- Theorem 37 [TODO] (final goal)
Roadmap
TODO
TODOs
- Create Roadmap (find what theorem 37 depends on and then create a game plan)
- Refactor
ElgotAlgebras.agda
usingCategories.Morphism.Reasoning
(nicer proofs)